Page 371 - Mathematical Techniques of Fractional Order Systems
P. 371

362  Mathematical Techniques of Fractional Order Systems


            12.3.2 Dual Combination Synchronization With Order m . n
            The fractional order Lu hyperchaotic system and the fractional order 4D
            Integral order hyperchaotic system are taken as the first two master
            systems as
                                 α
                                d x 11
                                 dt α  5 a 11 ðx 12 2 x 11 Þ 1 x 14
                                 α
                                d x 12
                                 dt α  52 x 11 x 13 1 a 13 x 12
                                 α                                   ð12:17Þ
                                d x 13
                                 dt α  5 x 11 x 12 2 a 12 x 13
                                 α
                                d x 14
                                 dt α  5 x 11 x 13 1 a 14 x 14

            and
                               α
                              d y 11
                              dt α  5 b 11 y 11 2 y 12
                               α
                              d y 12  5 y 11 2 y 12 y 2
                              dt α           13
                               α                                     ð12:18Þ
                              d y 13  52 b 12 y 12 2 b 13 y 13 2 b 14 y 14
                              dt α
                               α
                              d y 14  5 y 13 1 b 15 y 14 ;
                              dt α

            where    x 1i ; y 1i ði 5 1; 2; 3; 4Þ  are  states  variables  and
            a 1i ; ði 5 1; 2; 3; 4Þ, b 1i ði 5 1; 2; 3; 4; 5Þ are the constant parameters.
               The fractional order Chen hyperchaotic system (Matouk and Elsadany,
            2014) and fractional order Lorenz hyperchaotic system (Chen et al., 2011)
            are considered as
                                α
                               d x 21
                                dt α  5 a 21 ðx 22 2 x 21 Þ 1 x 24
                                α
                               d x 22
                                dt α  5 a 22 x 21 2 x 21 x 23 1 a 23 x 22
                                α                                    ð12:19Þ
                               d x 23  5 x 21 x 22 2 a 24 x 23
                                dt α
                                α
                               d x 24  5 x 22 x 23 1 a 25 x 24 ;
                                dt α

            where x 21 ; x 22 ; x 23 and x 24 are states variables and a 21 ; a 22 ; a 23 ; a 24 , and
            a 25 are constant parameters. The phase portraits of (12.19) in x 21 2 x 22 2 x 23 ,
   366   367   368   369   370   371   372   373   374   375   376