Page 375 - Mathematical Techniques of Fractional Order Systems
P. 375

366  Mathematical Techniques of Fractional Order Systems


                                  T
                                                        T
            where e 1 5 ½e 11 ; e 12 ; e 13 Š and e 2 5 ½e 21 ; e 22 ; e 23 Š . In view of preposi-
            tion 1 the control functions U 1 5 C 1 ½A 2 X 2 1 F 2 ðX 2 Þ 2 A 1 X 1 1 F 1 ðX 1 ފ 2
            A 3 C 1 ðX 2 1 X 1 Þ 2 F 3 ðX 3 Þ 1 K 1 e 1  and  U 2 5 C 2 ½B 2 Y 2 1 G 2 ðY 2 Þ 1 B 1 Y 1 1
            G 1 ðY 1 ފ 2 B 3 C 2 ðY 2 1 Y 1 Þ 2 G 3 ðY 3 Þ 1 K 2 e 2 will be
                     2                                                   3
                2  3
                       a 21 ðx 22 2x 21 Þ1x 24 1a 11 ðx 12 2x 11 Þ1x 14 1a 31 ðx 21 1x 11 Þ2a 31 ðx 22 1x 12 Þ2a 31 e 12
                 u 11
                                                                         5;
                     6  a 22 x 21 2x 21 x 23 1a 23 x 22 2x 11 x 13 1a 13 x 12 2a 33 ðx 22 1x 12 Þ1x 31 x 33 2ða 33 11Þe 12 7
                4  5
            U 1 5 u 12 54
                       x 21 x 22 2a 24 x 23 1x 11 x 12 2a 12 x 13 1x 22 x 23 1a 25 x 24 1x 11 x 13 1a 14 x 14
                 u 13
                       1a 32 ðx 23 1x 13 Þ1a 32 ðx 24 1x 14 Þ2x 31 x 32
                     2                                                    3
                       b 21 ðy 22 2y 21 Þ1y 24 1b 11 y 11 2y 12 1b 31 ðy 21 1y 11 Þ2b 31 ðy 22 1y 12 Þ2y 32 y 33 2b 31 e 22
                2  3
                 u 21                      2
                       b 22 y 21 2y 22 2y 21 y 23 1y 11 2y 12 y 1b 33 ðy 21 1y 11 Þ1ðy 22 1y 12 Þ1y 31 y 33 2b 33 e 21 7 :
                     6                                                    7
                                           13
                   5
                4
            U 2 5 u 22 5 6
                       y 21 y 22 2b 23 y 23 2b 12 y 12 2b 13 y 13 2b 14 y 14 2y 22 y 23 1b 24 y 24 1y 13 1b 15 y 14
                     4                                                    5
                 u 23
                       1b 32 ðy 23 1y 13 Þ1b 32 ðy 24 1y 14 Þ2y 31 y 32
               The error systems are given in the form
                                      α
                                     d e 1
                                      dt α  5 ðA 3 1 K 1 Þe 1
                                      α                                ð12:23Þ
                                     d e 2  5 ðB 3 1 K 2 Þe 2 :
                                      dt α
               The preposition 1 confirms that if we take gain matrices as
                 2               3      2               3
                  0    2a 31   0            0    2b 31  0
            K 1 5 0   2a 33 2 1  0 , K 2 5  4  2b 33  0  0 , then the systems
                                 5
                                                        5
                 4
                  0      0     0            0     0    0
            (12.17) (12.22) will be dual combination synchronized.
               Fig. 12.10A G represent the simulation results towards synchronization
            of the considered chaotic systems considering the earlier values of the para-
            meters of the systems. The initial conditions of master systems Lu, 4D
            Integral  order,  Chen,  Lorenz  hyperchaotic  system  are  taken  as
            ðx 11 ð0Þ; x 12 ð0Þ; x 13 ð0Þ; x 14 ð0ÞÞ 5 ð2 10; 2 14; 12; 10Þ, ðy 11 ð0Þ; y 12 ð0Þ; y 13 ð0Þ;
            y 14 ð0ÞÞ 5 ð1:2; 0:6; 0:8; 0:5Þ,  ðx 21 ð0Þ; x 22 ð0Þ; x 23 ð0Þ; x 24 ð0ÞÞ 5 ð2 1; 2 3; 2;
            5Þ, ðy 21 ð0Þ; y 22 ð0Þ; y 23 ð0Þ; y 24 ð0ÞÞ 5 ð1:5; 3; 2 1; 3Þ and slave systems Lu,
            Qi chaotic systems are taken as ðx 31 ð0Þ; x 32 ð0Þ; x 33 ð0ÞÞ 5 ð0:2; 0:5; 0:3Þ
            and ðy 31 ð0Þ; y 32 ð0Þ; y 33 ð0ÞÞ 5 ð2 1; 2 1; 2 2Þ, respectively. Hence the ini-
            tial condition of the error system will be ðe 11 ð0Þ; e 12 ð0Þ; e 13 ð0Þ;
            e 21 ð0Þ; e 22 ð0Þ; e 23 ð0ÞÞ 5 ð11:20; 17:50; 2 28:70; 2 3:70; 2 4:60; 2 5:3Þ.
            It is clear from the figures that the error vectors asymptotically converge to
            zero as time becomes large which justifies the achievement of dual combina-
            tion synchronization among the considered fractional order systems at order
            of the derivative α 5 0:98.
   370   371   372   373   374   375   376   377   378   379   380