Page 379 - Mathematical Techniques of Fractional Order Systems
P. 379

370  Mathematical Techniques of Fractional Order Systems


            Laskin, N., 2000. Fractional market dynamics. Phys. A 287 (3-4), 482 492.
            Li, C.P., Peng, G.J., 2004. Chaos in Chen’s system with a fractional order. Chaos Solitons Fract.
               22 (2), 443 450.
            Liu, W.Q., 2006. Anti-phase synchronization in coupled chaotic oscillators. Phys. Rev. E 73 (5),
               57203 57207.
            Lorenz, E.N., 1963. Deterministic non-periodic flow. J. Atmos. Sci. 20, 130 141. Available
               from: https://doi.org/10.1175/1520-0469(1963)020 , 0130:DNF . 2.0.CO;2.
            Luo, R.Z., Wang, Y.L., Deng, S.C., 2011. Combination synchronization of three classic chaotic
               systems using active backstepping design. Chaos 21 (4), 043114.
            Luo, R.Z., Wang, Y.L., 2012. Finite-time stochastic combination synchronization of three differ-
               ent chaotic systems and its application in secure communication. Chaos 22 (2), 023109.
            Matouk, A.E., Elsadany, A.A., 2014. Achieving synchronization between the fractional-order
               hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl. Math.
               Lett. 29, 30 35.
            Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A., 2017. Robust Adaptive
               Supervisory Fractional order Controller For optimal Energy Management in Wind Turbine
               with Battery Storage. Studies in Computational Intelligence, Vol. 688. Springer-Verlag,
               Germany, pp. 165 202.
            Moskalenko, O.I., Koronovskii, A.A., Hramov, A.E., 2010. Generalized synchronization of chaos
               for secure communication: remarkable stability to noise. Phys. Lett. A 374, 2925 2931.
            Ouannas, A., Al-sawalha, M.M., Ziar, T., 2016a. Fractional chaos synchronization schemes for
               different dimensional systems with non-identical fractional-orders via two scaling matrices.
               Optik 127 (20), 8410 8418.
            Ouannas, A., Azar, A.T., Abu-Saris, R., 2016b. A new type of hybrid synchronization between
               arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cyber. Available from: https://doi.org/
               10.1007/s13042-016-0566-3.
            Ouannas, A., Azar, A.T., Radwan, A.G., 2016c. On Inverse Problem of Generalized
               Synchronization Between Different Dimensional Integer-Order and Fractional-Order Chaotic
               Systems. The 28th International Conference on Microelectronics, IEEE, December 17-20,
               2016, Cairo, Egypt.
            Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017a. A New Method To Synchronize
               Fractional Chaotic Systems With Different Dimensions. Studies in Computational
               Intelligence, 688. Springer-Verlag, Germany, pp. 581 611.
            Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017b. A robust method for new fractional hybrid
               chaos synchronization. Math. Methods Appl. Sci. 40 (5), 1804 1812. Available from:
               https://doi.org/10.1002/mma.4099.
            Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017c. On a simple approach for Q-S synchroniza-
               tion of chaotic dynamical systems in continuous-time. Int. J. Comput. Sci. Math. 8 (1),
               20 27.
            Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017d. Generalized Synchronization of
               Different Dimensional Integer-order and Fractional Order Chaotic Systems. Studies in
               Computational Intelligence, 688. Springer-Verlag, Germany, pp. 671 697.
            Ouannas, A., Azar, A.T., Abu-Saris, R., 2017e. A new type of hybrid synchronization between
               arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cyber. 8 (6), 1887 1894. Available from:
               https://doi.org/10.1007/s13042-016-0566-3.
            Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017g. A new fractional hybrid chaos synchroniza-
               tion. Int. J. Model. Identif. Control 27 (4), 314 322.
   374   375   376   377   378   379   380   381   382   383   384