Page 380 - Mathematical Techniques of Fractional Order Systems
P. 380
Dual Combination Synchronization Scheme Chapter | 12 371
Ouannas, A., Azar, A.T., Ziar, T., 2017h. On Inverse Full State Hybrid Function Projective
Synchronization for Continuous-time Chaotic Dynamical Systems with Arbitrary
Dimensions. Differential Equations and Dynamical Systems. Available from: https://doi.org/
10.1007/s12591-017-0362-x.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017i. On New Fractional Inverse Matrix
Projective Synchronization Schemes. Studies in Computational Intelligence, Vol. 688.
Springer-Verlag, Germany, pp. 497 524.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017j. Fractional Inverse Generalized
Chaos Synchronization Between Different Dimensional Systems. Studies in Computational
Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 525 551.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017k. Study On Coexistence of Different
Types of Synchronization Between Different dimensional Fractional Chaotic Systems.
Studies in Computational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 637 669.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017l. Generalized Synchronization of
Different Dimensional Integer-order and Fractional Order Chaotic Systems. Studies in
Computational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 671 697.
Pan, L., Zhou, W., Zhou, L., Sun, K., 2011. Chaos synchronization between two different
fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simulat. 16 (6),
2628 2640.
Park, J.H., Kwon, O.M., 2005. A novel criterion for delayed feedback control of time-delay cha-
otic systems. Chaos Solitons Fractals 23 (2), 495 501.
Pecora, L.M., Carroll, T.L., 1990. Synchronization in chaotic system. Phys. Rev. Lett. 64 (8),
821 824.
Petras, I., 2009. Chaos in the fractional-order Volta’s system: modeling and simulation.
Nonlinear Dyn. 57 (1-2), 157 170.
Petras, I., 2011. Fractional-Order Nonlinear Systems. Higher Education Press, Beijing and
Springer-Verlag Berlin Heidelberg.
Podlubny, I., 1999. Fractional Differential Equations. Academic Press, New York.
Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M., Chen, W.C., Lin, K.T., et al., 2008. Chaos in the
Newton Leipnik system with fractional order. Chaos Solitons Fractals 36 (1), 98 103.
Shuai, J.W., Wong, K.W., 1998. Noise and synchronization in chaotic neural networks. Phys.
Rev. E 57 (6), 7002 7007.
Si, G., Sun, Z., Zhang, Y., Chen, W., 2012. Projective synchronization of different fractional-
order chaotic systems with non-identical orders. Nonlinear Anal. Real World Appl. 13 (4),
1761 1771.
Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J., 2017. Sliding ModeControl
Technique for Multi-switching Synchronization of Chaotic Systems. 9th International
Conference on Modelling, Identification and Control (ICMIC 2017), July 10-12, 2017,
Kunming, China.
Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ouannas, A., 2017.
Fractional Controllable Multi-Scroll V-Shape Attractor with Parameters Effect. The 6th
International Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6
May 2017, Thessaloniki Greece.
Srivastava, M., Agrawal, S.K., Das, S., 2013a. Adaptive projective synchronization between dif-
ferent chaotic systems with parametric uncertainties and external disturbances. Pram. J.
Phys. 81 (3), 417 437.