Page 377 - Mathematical Techniques of Fractional Order Systems
P. 377

368  Mathematical Techniques of Fractional Order Systems


            12.4 CONCLUSION
            The present article has successfully demonstrated the dual combination
            synchronization among four fractional order drive systems and two fractional
            order response systems using scaling matrices separately. Based on the
            stability analysis, the dual combination synchronization of chaotic systems
            through controller input parameters on the respective system has been
            achieved and the components of the error system tend to zero as time
            becomes large, which helps to find the time required for dual combination
            synchronization among chaotic systems. Numerical simulation results are
            given to exhibit the reliability and effectiveness of the proposed dual
            combination synchronization scheme towards predicting the accuracy of
            the theory.


            REFERENCES
            Agrawal, S.K., Srivastava, M., Das, S., 2012. Synchronization of fractional order chaotic systems
               using active control method. Chaos Solitons Fractals 45 (6), 737 752.
            Azar, A.T., Vaidyanathan, S., 2015a. Handbook of research on advanced intelligent control engi-
               neering and automation. Advances in Computational Intelligence and Robotics (ACIR)
               Book Series. IGI Global, USA, ISBN: 9781466672482.
            Azar, A.T., Vaidyanathan, S., 2015b. Computational Intelligence applications, Modeling and
               Control. Studies in Computational Intelligence, Vol. 575. Springer-Verlag, Germany, ISBN:
               978-3-319-11016-5.
            Azar, A.T., Vaidyanathan, S., 2015c. Chaos Modeling and Control Systems Design, Studies in
               Computational Intelligence, Vol. 581. Springer-Verlag, Germany, ISBN: 978-3-319-13131-3.
            Azar, A.T., Vaidyanathan, S., 2016. Advances in Chaos Theory and Intelligent Control. Studies
               in Fuzziness and Soft Computing, Vol. 337. Springer-Verlag, Germany, ISBN: 978-3-319-
               30338-3.
            Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and
               Synchronization of Chaotic Systems. Studies in Computational Intelligence, Vol. 688.
               Springer-Verlag, Germany, ISBN: 978-3-319-50248-9.
            Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.T., Radwan, A.G., et al.,
               2017b. A novel chaotic system without equilibrium: dynamics, synchronization and circuit
               realization. Complexity vol. 2017, . Available from: https://doi.org/10.1155/2017/
               7871467Article ID 7871467, 11pages, 2017.
            Azar, A.T., Ouannas, A., Singh, S., 2017c. Control of new type of fractional chaos synchroniza-
               tion, Proceedings of the International Conference on Advanced Intelligent Systems and
               Informatics 2017, Advances in Intelligent Systems and Computing series, Vol. 639.
               Springer-Verlag, Germany, pp. 47 56.
            Azar, A.T., Zhu, Q., 2015. Advances and Applications in Sliding Mode Control systems. Studies
               in Computational Intelligence, Vol. 576. Springer-Verlag, Germany, ISBN: 978-3-319-
               11172-8.
            Blasius, B., Huppert, A., Stone, L., 1999. Complex dynamics and phase synchronization in spa-
               tially extended ecological systems. Nature 399, 354 359. Available from: https://doi.org/
               10.1038/20676.
   372   373   374   375   376   377   378   379   380   381   382