Page 363 - Mathematical Techniques of Fractional Order Systems
P. 363

354  Mathematical Techniques of Fractional Order Systems


                                               80
                                               60
               200
                                               40
               150
                                               20
               100                             0
              y 13 (t)  50                   y 12 (t)  –20
                0
                                              –40
               –50
               100                            –60
                  50                      200  –80
                      0            0   100
                        –50     –100          –100
                     (t)
                    y 12  –100  –200  y (t)    –200  –150  –100  –50  0  50  100  150
                                    11
                                                            y (t)
                                                             11
                           (A)                              (B)
                                               160
              160
                                               140
              140
                                               120
              120
                                               100
              100
             y 13 (t)  80                     y 13 (t)  80
                                                60
               60
               40                               40
               20                               20
               0                                0
              –20                              –20
               –200  –150  –100  –50  0  50  100  150  –100  –50  0  50  100
                            y (t)                            y (t)
                             11                              12
                            (C)                              (D)
            FIGURE 12.2 Phase portraits of Qi system at α 5 0:98: (A) in y 11 2 y 12 2 y 13 space, (B) in
            y 11 2 y 12 plane, (C) in y 11 2 y 13 plane, (D) in y 12 2 y 13 plane.
               The phase portrait of system (12.11) at α 5 0:98 is depicted through
            Fig. 12.2 for the values of the parameters b 11 5 35; b 12 5 8=3; b 13 5 80 and
            initial conditions ðy 11 ð0Þ; y 12 ð0Þ; y 13 ð0ÞÞ 5 ð2 1; 2 1; 2 2Þ:
               The fractional-order Newton Leipnik system (Sheu et al., 2008) and the
            fractional-order Volta’s System (Petras, 2009) are considered as the other
            two master systems as
                               α
                              d x 21  52 a 21 x 21 1 x 22 1 10x 22 x 23
                               dt α
                               α
                              d x 22
                               dt α  52 x 21 2 0:4x 22 1 5x 21 x 23  ð12:12Þ
                               α
                              d x 23  5 a 22 x 23 2 5x 21 x 22 ;
                               dt α

            where a 21 and a 22 are variable parameters. Usually the parameter a 22 is
                  0
                          0
                                                                      0
                                                                         0
                             0
                     0
            taken in the interval (0, 8.0). The system is ill-behaved outside this interval.
            As a 22 -0, the system shows relatively uninteresting dynamics and for
            a 22 $ 0:8 the given system becomes explosive, i.e., the solution diverges to
            infinity for any initial condition other than the critical points.
   358   359   360   361   362   363   364   365   366   367   368