Page 420 - Mathematical Techniques of Fractional Order Systems
P. 420

On the Fractional Order Generalized Discrete Maps Chapter | 13  405


             Atici, F., Eloe, P., 2009. Initial value problems in discrete fractional calculus. Proc. Am. Math.
                Soc. 137, 981 989.
             Ausloos, M., Dirickx, M., 2006. The Logistic Map and the Route to Chaos: From the
                Beginnings to Modern Applications. Springer Science & Business Media, New York.
             Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and
                Synchronization of Chaotic Systems., Vol. 688. Springer, New York.
             Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.T., Radwan, A.G., et al.,
                2017b. A novel chaotic system without equilibrium: dynamics, synchronization, and circuit
                realization. Complexity 2017. Article ID 7871467.
             Bresten, C.L., Jung, J.H., 2009. A study on the numerical convergence of the discrete logistic
                map. Commun. Nonlinear Sci. Numer. Simulat. 14, 3076 3088.
             Chaves, D.P., Souza, C.E., Pimentel, C., 2016. A smooth chaotic map with parameterized shape
                and symmetry. EURASIP J. Adv. Signal Processing 2016, 122.
             Chen, F., Luo, X., Zhou, Y., 2011. Existence results for nonlinear fractional difference equation.
                Adv. Diff. Equ 2011.
             Chien, T.I., Liao, T.L., 2005. Design of secure digital communication systems using chaotic modu-
                lation, cryptography and chaotic synchronization. Chaos Solitons Fractals 24, 241 255.
             da Costa, D.R., Medrano-T, R.O., Leonel, E.D., 2017. Route to chaos and some properties in the
                boundary crisis of a generalized logistic mapping. Phys. Stat. Mech. Appl.
             Dar, M.R., Kant, N.A., Khanday, F.A., 2017. Electronic implementation of fractional-order
                Newton Leipnik chaotic system with application to communication. J. Comput. Nonlinear
                Dyn. 12, 054502.
             El Raheem, Z., Salman, S., 2014. On a discretization process of fractional-order logistic differen-
                tial equation. J. Egypt. Math. Soc. 22, 407 412.
             El-Sayed, A., El-Mesiry, A., El-Saka, H., 2004. Numerical solution for multi-term fractional
                (arbitrary) orders differential equations. Comput. Appl. Math. 23, 33 54.
             Elhadj, Z., Sprott, J.C., 2008. The effect of modulating a parameter in the logistic map. Chaos:
                an Interdisciplinary. J. Nonlinear Sci. 18, 023119.
             Elwakil, A.S., O ¨ zoguz, S., 2008. A system and circuit for generating “multi-butterflies”. Int. J.
                Bifurcation Chaos 18, 841 844.
             Elwakil, A.S., Allagui, A., Freeborn, T., Maundy, B., 2017. Further experimental evidence of the
                fractional-order energy equation in supercapacitors. AEU-Int. J. Electr. Commun. 78 (8),
                209 212.
             Field, R.J., Schneider, F., 1989. Oscillating chemical reactions and nonlinear dynamics. J. Chem.
                Educ. 66, 195.
             Freeborn, T.J., 2013. A survey of fractional-order circuit models for biology and biomedicine.
                IEEE J. Emerg. Selected Topics Circuits Systems 3, 416 424.
             Gutie ´rrez, J.M., Iglesias, A., 1998. Mathematica package for analysis and control of chaos in
                nonlinear systems. Comput. Phys. 12, 608 619.
             He, Y., Zhou, J., Li, C., Yang, J., Li, Q., 2008. A precise chaotic particle swarm optimization
                algorithm based on improved tent map, in: Fourth International Conference on Natural
                Computation, 2008. ICNC’08., IEEE. pp. 569 573.
             Henein, M.M.R., Sayed, W.S., Radwan., A.G., Abd-El-Hafiz, S.K., 2016. Switched active con-
                trol synchronization of three fractional order chaotic systems, in: 13th International
                Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
                Information Technology.
             Holm, M.T., 2011. The laplace transform in discrete fractional calculus. Comput. Math.
                Applicat. 62, 1591 1601.
   415   416   417   418   419   420   421   422   423   424   425