Page 420 - Mathematical Techniques of Fractional Order Systems
P. 420
On the Fractional Order Generalized Discrete Maps Chapter | 13 405
Atici, F., Eloe, P., 2009. Initial value problems in discrete fractional calculus. Proc. Am. Math.
Soc. 137, 981 989.
Ausloos, M., Dirickx, M., 2006. The Logistic Map and the Route to Chaos: From the
Beginnings to Modern Applications. Springer Science & Business Media, New York.
Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and
Synchronization of Chaotic Systems., Vol. 688. Springer, New York.
Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.T., Radwan, A.G., et al.,
2017b. A novel chaotic system without equilibrium: dynamics, synchronization, and circuit
realization. Complexity 2017. Article ID 7871467.
Bresten, C.L., Jung, J.H., 2009. A study on the numerical convergence of the discrete logistic
map. Commun. Nonlinear Sci. Numer. Simulat. 14, 3076 3088.
Chaves, D.P., Souza, C.E., Pimentel, C., 2016. A smooth chaotic map with parameterized shape
and symmetry. EURASIP J. Adv. Signal Processing 2016, 122.
Chen, F., Luo, X., Zhou, Y., 2011. Existence results for nonlinear fractional difference equation.
Adv. Diff. Equ 2011.
Chien, T.I., Liao, T.L., 2005. Design of secure digital communication systems using chaotic modu-
lation, cryptography and chaotic synchronization. Chaos Solitons Fractals 24, 241 255.
da Costa, D.R., Medrano-T, R.O., Leonel, E.D., 2017. Route to chaos and some properties in the
boundary crisis of a generalized logistic mapping. Phys. Stat. Mech. Appl.
Dar, M.R., Kant, N.A., Khanday, F.A., 2017. Electronic implementation of fractional-order
Newton Leipnik chaotic system with application to communication. J. Comput. Nonlinear
Dyn. 12, 054502.
El Raheem, Z., Salman, S., 2014. On a discretization process of fractional-order logistic differen-
tial equation. J. Egypt. Math. Soc. 22, 407 412.
El-Sayed, A., El-Mesiry, A., El-Saka, H., 2004. Numerical solution for multi-term fractional
(arbitrary) orders differential equations. Comput. Appl. Math. 23, 33 54.
Elhadj, Z., Sprott, J.C., 2008. The effect of modulating a parameter in the logistic map. Chaos:
an Interdisciplinary. J. Nonlinear Sci. 18, 023119.
Elwakil, A.S., O ¨ zoguz, S., 2008. A system and circuit for generating “multi-butterflies”. Int. J.
Bifurcation Chaos 18, 841 844.
Elwakil, A.S., Allagui, A., Freeborn, T., Maundy, B., 2017. Further experimental evidence of the
fractional-order energy equation in supercapacitors. AEU-Int. J. Electr. Commun. 78 (8),
209 212.
Field, R.J., Schneider, F., 1989. Oscillating chemical reactions and nonlinear dynamics. J. Chem.
Educ. 66, 195.
Freeborn, T.J., 2013. A survey of fractional-order circuit models for biology and biomedicine.
IEEE J. Emerg. Selected Topics Circuits Systems 3, 416 424.
Gutie ´rrez, J.M., Iglesias, A., 1998. Mathematica package for analysis and control of chaos in
nonlinear systems. Comput. Phys. 12, 608 619.
He, Y., Zhou, J., Li, C., Yang, J., Li, Q., 2008. A precise chaotic particle swarm optimization
algorithm based on improved tent map, in: Fourth International Conference on Natural
Computation, 2008. ICNC’08., IEEE. pp. 569 573.
Henein, M.M.R., Sayed, W.S., Radwan., A.G., Abd-El-Hafiz, S.K., 2016. Switched active con-
trol synchronization of three fractional order chaotic systems, in: 13th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology.
Holm, M.T., 2011. The laplace transform in discrete fractional calculus. Comput. Math.
Applicat. 62, 1591 1601.

