Page 423 - Mathematical Techniques of Fractional Order Systems
P. 423

408  Mathematical Techniques of Fractional Order Systems


            Sayed, W.S., Radwan., A.G., Abd-El-Hafiz, S.K., 2016a. Generalized synchronization involving
               a linear combination of fractional-order chaotic systems, in: 13th International Conference
               on Electrical Engineering/Electronics, Computer, Telecommunications and Information
               Technology.
            Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2016b. Double-sided bifurcations in tent maps: analy-
               sis and applications. 3rd International Conference on Advances in Computational Tools for
               Engineering Applications (ACTEA). IEEE, pp. 207 210.
            Sayed, W.S., Fahmy, H.A., Rezk, A.A., Radwan, A.G., 2017a. Generalized smooth transition
               map between tent and logistic maps. Int. J. Bifurcation Chaos 27, 1730004.
            Sayed, W.S., Henein, M.M., Abd-El-Hafiz, S.K., Radwan, A.G., 2017b. Generalized dynamic
               switched synchronization between combinations of fractional-order chaotic systems.
               Complexity 2017.
            Sayed, W.S., Radwan, A.G., Rezk, A.A., Fahmy, H.A., 2017c. Finite precision logistic map
               between computational efficiency and accuracy with encryption applications. Complexity
               2017.
            Shimada, Y., Takagi, E., Ikeguchi, T., 2016. Symmetry of lyapunov exponents in bifurcation
               structures of one-dimensional maps. Chaos: an Interdisciplinary. J. Nonlinear Sci. 26,
               123119.
            Shukla, M.K., Sharma, B., 2017. Backstepping based stabilization and synchronization of a class
               of fractional order chaotic systems. Chaos Solitons Fractals 102, 274 284.
            Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Ounnas, A., Radwan, A.G., 2017.
               Fractional controllable multi-scroll V-shape attractor with parameters effect. 2017 6th
               International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE,
               pp. 1 4.
            Sutter, J., Pearl, R., 1946. Introduction to medical biometry and statistics. Population (French
               Edition) 1, 163. Available from: https://doi.org/10.2307/1524402. URL: https://doi.org/
               10.2307%2F1524402.
            Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al., 2017.
               FPGA implementation of two fractional order chaotic systems. AEU-Int. J. Electr. Commun.
               78, 162 172.
            Tsuchiya, T., Yamagishi, D., 1997. The complete bifurcation diagram for the logistic map.
               Zeitschrift fu ¨r Naturforschung A 52, 513 516.
            Va ´zquez-Medina, R., Dı ´az-Me ´ndez, A., del Rı ´o-Correa, J.L., Lo ´pez-Herna ´ndez, J., 2009. Design
               of chaotic analog noise generators with logistic map and MOS QT circuits. Chaos Solitons
               Fractals 40, 1779 1793.
            Wu, G.C., Baleanu, D., 2014. Discrete fractional logistic map and its chaos. Nonlinear Dynam.
               75, 283 287.
            Yousri, D., AbdelAty, A.M., Said, L.A., AboBakr, A., Radwan, A.G., 2017. Biological inspired
               optimization algorithms for cole-impedance parameters identification. AEU-Int. J. Electr.
               Commun. 78, 79 89.
            Yu, S., Tang, W.K., Lu ¨, J., Chen, G., 2010. Design and implementation of multi-wing butterfly
               chaotic attractors via Lorenz-type systems. Int. J. Bifurcation Chaos 20, 29 41.
            Zidan, M.A., Radwan, A.G., Salama, K.N., 2012. Controllable V-shape multiscroll butterfly
               attractor: system and circuit implementation. Int. J. Bifurcation Chaos 22, 1250143.
   418   419   420   421   422   423   424   425   426   427   428