Page 423 - Mathematical Techniques of Fractional Order Systems
P. 423
408 Mathematical Techniques of Fractional Order Systems
Sayed, W.S., Radwan., A.G., Abd-El-Hafiz, S.K., 2016a. Generalized synchronization involving
a linear combination of fractional-order chaotic systems, in: 13th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology.
Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2016b. Double-sided bifurcations in tent maps: analy-
sis and applications. 3rd International Conference on Advances in Computational Tools for
Engineering Applications (ACTEA). IEEE, pp. 207 210.
Sayed, W.S., Fahmy, H.A., Rezk, A.A., Radwan, A.G., 2017a. Generalized smooth transition
map between tent and logistic maps. Int. J. Bifurcation Chaos 27, 1730004.
Sayed, W.S., Henein, M.M., Abd-El-Hafiz, S.K., Radwan, A.G., 2017b. Generalized dynamic
switched synchronization between combinations of fractional-order chaotic systems.
Complexity 2017.
Sayed, W.S., Radwan, A.G., Rezk, A.A., Fahmy, H.A., 2017c. Finite precision logistic map
between computational efficiency and accuracy with encryption applications. Complexity
2017.
Shimada, Y., Takagi, E., Ikeguchi, T., 2016. Symmetry of lyapunov exponents in bifurcation
structures of one-dimensional maps. Chaos: an Interdisciplinary. J. Nonlinear Sci. 26,
123119.
Shukla, M.K., Sharma, B., 2017. Backstepping based stabilization and synchronization of a class
of fractional order chaotic systems. Chaos Solitons Fractals 102, 274 284.
Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Ounnas, A., Radwan, A.G., 2017.
Fractional controllable multi-scroll V-shape attractor with parameters effect. 2017 6th
International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE,
pp. 1 4.
Sutter, J., Pearl, R., 1946. Introduction to medical biometry and statistics. Population (French
Edition) 1, 163. Available from: https://doi.org/10.2307/1524402. URL: https://doi.org/
10.2307%2F1524402.
Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al., 2017.
FPGA implementation of two fractional order chaotic systems. AEU-Int. J. Electr. Commun.
78, 162 172.
Tsuchiya, T., Yamagishi, D., 1997. The complete bifurcation diagram for the logistic map.
Zeitschrift fu ¨r Naturforschung A 52, 513 516.
Va ´zquez-Medina, R., Dı ´az-Me ´ndez, A., del Rı ´o-Correa, J.L., Lo ´pez-Herna ´ndez, J., 2009. Design
of chaotic analog noise generators with logistic map and MOS QT circuits. Chaos Solitons
Fractals 40, 1779 1793.
Wu, G.C., Baleanu, D., 2014. Discrete fractional logistic map and its chaos. Nonlinear Dynam.
75, 283 287.
Yousri, D., AbdelAty, A.M., Said, L.A., AboBakr, A., Radwan, A.G., 2017. Biological inspired
optimization algorithms for cole-impedance parameters identification. AEU-Int. J. Electr.
Commun. 78, 79 89.
Yu, S., Tang, W.K., Lu ¨, J., Chen, G., 2010. Design and implementation of multi-wing butterfly
chaotic attractors via Lorenz-type systems. Int. J. Bifurcation Chaos 20, 29 41.
Zidan, M.A., Radwan, A.G., Salama, K.N., 2012. Controllable V-shape multiscroll butterfly
attractor: system and circuit implementation. Int. J. Bifurcation Chaos 22, 1250143.

