Page 422 - Mathematical Techniques of Fractional Order Systems
P. 422
On the Fractional Order Generalized Discrete Maps Chapter | 13 407
Pareek, N.K., Patidar, V., Sud, K.K., 2006. Image encryption using chaotic logistic map. Image
Vision Comput. 24, 926 934.
Pellicer-Lostao, C., Lo ´pez-Ruiz, R., 2010. A chaotic gas-like model for trading markets. J.
Comput. Sci. 1, 24 32.
Petras, I., 2011. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation.
Springer Science & Business Media, New York.
Podlubny, I., 1999. Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of Their Solution and Some of Their
Applications, Vol. 198. Academic Press, San Diego.
Radwan, A., Soliman, A., El-Sedeek, A., 2004. MOS realization of the modified Lorenz chaotic
system. Chaos Solitons Fractals 21, 553 561.
Radwan, A., Moaddy, K., Salama, K.N., Momani, S., Hashim, I., 2014. Control and switching
synchronization of fractional order chaotic systems using active control technique. J. Adv.
Res. 5, 125 132.
Radwan, A.G., 2013. On some generalized discrete logistic maps. J. Adv. Res. 4, 163 171.
Radwan, A.G., Abd-El-Hafiz, S.K., 2013. Image encryption using generalized tent map. IEEE
20th International Conference on Electronics, Circuits, and Systems (ICECS). IEEE,
pp. 653 656.
Radwan, A.G., Soliman, A.M., El-Sedeek, A.L., 2003. MOS realization of the double-scroll-like
chaotic equation. IEEE Trans. Circuits Systems I: Fund. Theory Applicat. 50, 285 288.
Radwan, A.G., Soliman, A., Elwakil, A.S., Sedeek, A., 2009. On the stability of linear systems
with fractional-order elements. Chaos Solitons Fractals 40, 2317 2328.
Radwan, A.G., AbdElHaleem, S.H., Abd-El-Hafiz, S.K., 2016. Symmetric encryption algorithms
using chaotic and non-chaotic generators: a review. J. Adv. Res. 7, 193 208.
Rajagopal, K., Vaidyanathan, S., Karthikeyan, A., Duraisamy, P., 2017. Dynamic analysis and
chaos suppression in a fractional order brushless DC motor. Electr. Eng. 99, 721 733.
Ruan, H., Yaz, E.E., Zhai, T., Yaz, Y.I., 2004. A generalization of tent map and its use in EKF
based chaotic parameter modulation/demodulation. 43rd IEEE Conference on Decision and
Control (CDC), 2004. IEEE, pp. 2071 2075.
Said, L.A., Ismail, S.M., Radwan, A.G., Madian, A.H., El-Yazeed, M.F.A., Soliman, A.M.,
2016a. On the optimization of fractional order low-pass filters. Circuits Systems Signal
Processing 35, 2017 2039.
Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M., 2016b. Fractional-order inverting and
non-inverting filters based on CFOA. 39th International Conference on Telecommunications
and Signal Processing (TSP). IEEE, pp. 599 602.
Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M., 2016c. Fractional order oscillator
design based on two-port network. Circuits Systems Signal Processing 35, 3086 3112.
Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M., 2016d. Two-port two impedances frac-
tional order oscillators. Microelectr. J. 55, 40 52.
Said, L.A., Radwan, A.G., Madian, A.H., Soliman, A.M., 2017. Three fractional-order-
capacitors-based oscillators with controllable phase and frequency. J. Circuits Systems
Computers 26, 1750160.
Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2015a. Design of a generalized bidirectional tent map
suitable for encryption applications. 11th International Computer Engineering Conference
(ICENCO). IEEE, pp. 207 211.
Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2015b. Design of positive, negative, and alternating
sign generalized logistic maps. Discrete Dynam. Nat. Soc. 2015.

