Page 447 - Mathematical Techniques of Fractional Order Systems
P. 447

432  Mathematical Techniques of Fractional Order Systems


            while the slave system is given by:

                             α            S s   βS s I s
                            D S s 5 rS s 1 2  2       1 u 1 ðtÞ;     ð14:65aÞ
                                          k    1 1 aS s
                               α
                             D I s 5  βI s Z s  2 μI s 2 γI s 1 u 2 ðtÞ;  ð14:65bÞ
                                    1 1 aZ s
                                  α
                                 D Z s 5  1  ð S s 2 Z s Þ 1 u 3 ðtÞ:  ð14:65cÞ
                                        T
               The control inputs were chosen to be:
                                 r           βS s I s  βS m I m
                                        2
                                    2
                    u 1 ðtÞ 5 V 1 ðtÞ 1 ðS 2 S Þ 1  2       ;        ð14:66aÞ
                                 k  s   m   1 1 aS s  1 1 aS m
                                           βI s Z s  βI m Z m
                             u 2 ðtÞ 5 V 2 ðtÞ 2  1       ;         ð14:66bÞ
                                          1 1 aZ s  1 1 aZ m
                                      u 3 ðtÞ 5 V 3 ðtÞ;             ð14:66cÞ

            where:
                         0                             1
                           2ðr 1 1Þ      0         0
              0      1                                  0        1
                V 1 ðtÞ       0                    0       S m 2 S s
                         B          ðμ 11 γ 2 1Þ       C
              @  V 2 ðtÞ  A  5  B  21             1    C@  I m 2 I s  A :  ð14:67Þ
                                         0         2 1
                         @                             A
                V 3 ðtÞ                                   Z m 2 Z s
                              T                  T
               Fig. 14.11 shows the simulation results of the this synchronization
            system where the control action is applied at t 5 5 seconds. The simulation
            parameters are: r 5 2, k 5 5, a 5 0:01, β 5 0:5, μ 5 0:3, γ 5 0:2, and
            T 5 0:85. The fractional order alpha 5 0:9. It was observed that the syn-
            chronization time increases as the order approaches the integer case
            ðα 5 1:0Þ.


            14.7 MOTORS

            Chaotic behavior is highly undesirable in motors as it causes many pro-
            blems, such as low frequency oscillations in the current, torque ripples, and
            even motor collapse. Hence, identifying the range of parameters at which
            the motor exhibit chaos is important for motor protection. Once the motor
            enters the chaotic region, chaos control must be applied to prevent system
            collapse. This section discusses two fractional order nonlinear motor mod-
            els introduced in literature: fractional order Brushless DC Motor model
            (BLDCM) and fractional order Permanent Magnet Synchronous Motor
            model (PMSM).
   442   443   444   445   446   447   448   449   450   451   452