Page 483 - Mathematical Techniques of Fractional Order Systems
P. 483
Multiswitching Synchronization Chapter | 15 469
Azar, A.T., Vaidyanathan, S., 2016. Advances in Chaos Theory and Intelligent Control, Vol.
337. Springer, Berlin, Germany.
Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and
Synchronization of Chaotic Systems. Vol. 688. Studies inComputational Intelligence.
Springer, Berlin, Germany.
Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.-T., Radwan, A.G., et al.,
2017b. A novel chaotic system without equilibrium: dynamics, synchronization, and circuit
realization. Complexity 2017 (Article ID 7871467), 11 pages.
Azar, A.T., Kumar, J., Kumar, V., Rana, K.P.S., 2018a. Control of a Two Link Planar
Electrically-Driven Rigid Robotic Manipulator Using Fractional Order SOFC. Springer
International Publishing, Cham, pp. 57 68. Available from: https://doi.org/10.1007/978-3-
319-64861-3_6.
Azar, A.T., Ouannas, A., Singh, S., 2018b. Control of New Type of Fractional Chaos
Synchronization. Springer International Publishing, Cham, pp. 47 56. Available from:
https://doi.org/10.1007/978-3-319-64861-3_5.
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S., 2002. The synchronization of
chaotic systems. Phys. Rep. 366, 1 101. Available from: https://doi.org/10.1016/S0370-
1573(02)00137-0.
Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T., 2016a. Fuzzy adaptive synchronization
of uncertain fractional-order chaotic systems. Advances in Chaos Theory and
IntelligentControl. Springer, Berlin, Germany, pp. 681 697.
Boulkroune, A., Hamel, S., Azar, A.T., Vaidyanathan, S., 2016b. Fuzzy control-based function
synchronization of unknown chaotic systems with dead-zone input. In: Azar, A.T.,
Vaidyanathan, S. (Eds.), Advances in Chaos Theory and Intelligent Control. Springer
International Publishing, Cham, pp. 699 718.
Ge, Z.-M., Ou, C.-Y., 2008. Chaos synchronization of fractional order modified duffing systems
with parameters excited by a chaotic signal. Chaos Solitons Fractals 35 (4), 705 717.
Available from: http://www.sciencedirect.com/science/article/pii/S096007790600484X.
Golmankhaneh, A.K., Arefi, R., Baleanu, D., 2015. Synchronization in a nonidentical fractional
order of a proposed modified system. J. Vibrat. Control 21 (6), 1154 1161.
Grassi, G., Ouannas, A., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.-T., et al., 2017. Chaos
synchronisation of continuous systems via scalar signal. In: 6th International Conference on
Modern Circuits and Systems Technologies (MOCAST), pp. 1 4.
Hajipour, A., Aminabadi, S.S., 2016. Synchronization of chaotic arneodo system of incommen-
surate fractional order with unknown parameters using adaptive method. Optik-Int. J. Light
Electron Optics 127 (19), 7704 7709.
He, G.-T., Luo, M.-K., 2012. Dynamic behavior of fractional order duffing chaotic system and
its synchronization via singly active control. Appl. Math. Mech. 33 (5), 567 582. Available
from: http://dx.doi.org/10.1007/s10483-012-1571-6.
Hu, N., Wen, X., 2003. The application of duffing oscillator in characteristic signal detection of
early fault. J. Sound Vib. 268 (5), 917 931. Available from: http://www.sciencedirect.com/
science/article/pii/S0022460X03000026.
Jiang, Y., Xia, B., Zhao, X., Nguyen, T., Mi, C., de Callafon, R.A., 2017. Data-based fractional
differential models for non-linear dynamic modeling of a lithium-ion battery. Energy 135,
171 181. Available from: http://www.sciencedirect.com/science/article/pii/S0360544
217311064.
Li, Z., Chen, D., Zhu, J., Liu, Y., 2015. Nonlinear dynamics of fractional order duffing system.
Chaos Solitons Fractals 81, 111 116.

