Page 57 - Mathematical Techniques of Fractional Order Systems
P. 57

Nonlinear Fractional Order Boundary-Value Problems Chapter | 2  47


                                            3
                                      uðtÞ 5  ð 12tÞ 2                 ð2:39Þ
                                            2
             It has been shown (Abbasbandy and Shivanian, 2011; Semary and Hassan,
             2015; Barletta, 1999; Barletta et al., 2005) by semianalytic and numerical meth-
             ods that Eqs. (2.37), (2.38) admit dual solutions for any given E in the interval
             (2N,0) , (0, E max )inwhich E max D 228.128. This study generalizes the
             boundary value problem (2.37), (2.38) in the fractional order domain as follows:
                                                    2
                                                du
                                             E


                                      α
                                     D uðtÞ 5                          ð2:40Þ
                                      t
                                             16 dt
             where 3 , α # 4 and subject to boundary conditions (2.38). The model
             (2.40) with the boundary conditions (2.38) has been solved using PHAM and
             power series method (Arqub et al., 2014; Alomari et al., 2013). Alomari
             et al. (2013) applied the PHAM explained in Section 2.2.1 by using the aux-
                                     4
                                    @
             iliary linear operator L : ½Š 5  @t 4 : ½Š. This section applies the same method for
             the model (2.40) but using fractional order linear operator L as follows
                                              α
                                 L½ϕðt; E; pފ 5 D ½ϕðt; E; pފ;       ð2:41Þ
                                              t
                    α
             where D defined in (2.3) and the operator L has the property
                    t
                                  α
                                              2
                                                   3
                                D ½c 0 1 c 1 t 1 c 2 t 1 c 3 t Š 5 0:  ð2:42Þ
                                  t
                To construct the dual solution of the model (2.40) with conditions (2.38)
             can be replaced formally by the following problem
                                   2
                               du


                            E
                     α
                    D uðtÞ 5       ; u ð0Þ 5 u vð0Þ 5 uð1Þ 5 0; uvð0Þ 5 E;  ð2:43Þ
                                     0
                                           0
                     t
                            16 dt
             and the forcing condition
                                       ð 1
                                         uðtÞdt 5 1:                   ð2:44Þ
                                        0
                From the conditions in Eq. (2.43), the initial approximation guess can be
                                             E
                                               2
                                    u 0 ðt; EÞ 5 ðt 2 1Þ:              ð2:45Þ
                                             2
                According the linear operator (2.41) and choosing H(t) 5 1, the mth-order
             deformation Eq. (2.25) of the problem (2.43) reads
                                       (                  "             2  #)
                                          α
               α
              D u m ðt; EÞ 2 χ u m21 ðt; EÞ 5 hD u m21 ðt; EÞ 2  E  D m  p  dϕðt; E; pÞ  ;


               t           m              t
                                                     16          dt
                                                                       ð2:46Þ
                                                          α
             applying the Riemann Liouville integral of order α(J )on Eq. (2.46) and
             using the properties of the homotopy derivative (2.7), the mth-order deforma-
             tion equation becomes
   52   53   54   55   56   57   58   59   60   61   62