Page 60 - Mathematical Techniques of Fractional Order Systems
P. 60

50  Mathematical Techniques of Fractional Order Systems


                                          ð 1
                                   uð1Þ 5 0;  uðtÞdt 5 1:             ð2:54Þ
                                           0
               By applying the iterative formula (2.34) in Eq. (2.40) with initial condi-
            tions (2.53) and by choosing H(t) 5 1 then
                                             (                          2  )
                                     t
                                    ð
                                  h       α21   α          E  du m ðτ; h; EÞ
            u m11 ðt; h; EÞ 5 u m ðt; h; EÞ 2  ðt2τÞ  D u m ðτ; h; EÞ 2  dτ  dτ:
                                                τ
                                ΓðαÞ 0                    16
                                                                       ð2:55Þ
               According to the conditions (2.53), the initial approximation solution
            u 0 (t, E) can be written as
                                          1
                                             2
                                    u 0 ðt; EÞ ðEt 1 2γÞ:             ð2:56Þ
                                          2
               Starting with the initial approximation solution (2.56), the solution of the
            successive approximations (2.55), u m11 (t, h,E), m $ 0 is as follows

                                       t E       Eht 21α 2
                                                       E
                                        2
                          u 1 ðt; h; EÞ 5 γ 1  1                      ð2:57Þ
                                                        2
                                        2   8αð2 1 3α 1 α ÞΓðαÞ
                           2
                          t E       Eht 21α 2
                                          E
             u 2 ðt; h; EÞ 5 γ 1  1              2
                                           2
                           2   8αð2 1 3α 1 α ÞΓðαÞ
                    0                                                    1
                                         α                2 2 2α 2
                       64ð2 1 1 hÞ   8Eht ð2 1 αÞEΓðαÞ  3E h t E Γð2 1 2αÞ
                  E
             Eht  21α 2@         2  2                2    2              A
                      αð2 1 3α 1 α Þ     Γð3 1 2αÞ       a ΓðαÞΓð4 1 3αÞ
                                                                           ;
                                        512ΓðαÞ
                                                                      ð2:58Þ
            and so on. With the help of the remaining two boundary conditions
            (2.54), then
                               ð 1      ð 1
                                 uðtÞdt    u m11 ðt; h; EÞdt 5 1;     ð2:59Þ
                                0        0
                                  uð1Þ  u m11 ð1; h; EÞ 5 0;          ð2:60Þ
               By using Eq. (2.60) to delete the unknown parameter γ of the Eq. (2.59)
            so that it contains only two unknown parameters E and h. When α 5 3.9, and
            according to the Eq. (2.59), the unknown parameter E is a function of the
            auxiliary parameter h, which has been plotted in the h-range [0, 2.5] in
            Fig. 2.3 for different values of E and m 5 6. Two E-plateaus (two line seg-
            ments give constant values of E) can be identified in this Figure for each
            case; this means that there are two solutions. From this Figure it is clear that
            the valid value of h for the two solutions is one.
   55   56   57   58   59   60   61   62   63   64   65