Page 625 - Mathematical Techniques of Fractional Order Systems
P. 625
Control and Synchronization Chapter | 19 595
Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., Pham, V.T., 2017. Four-wing attractors in a novel
chaotic system with hyperbolic sine nonlinearity. Optik Int. J. Light Electr. Opt. 131
(2017), 1071 1078.
Wei, Y., Tse, P.W., Yao, Z., Wang, Y., 2016. Adaptive backstepping output feedback control
for a class of nonlinear fractional order systems. Nonlinear Dynam. 86 (2), 1047 1056.
West, B.J., 2007. Fractional calculus in bioengineering. J. Statist. Phys. 126 (6), 1285 1286.
Yang, J., Hu, G., Xiao, J., 1998. Chaos synchronization in coupled chaotic oscillators with multi-
ple positive Lyapunov exponents. Phys. Rev. Lett. 80 (3), 496 499.
Yang, N., Liu, C., 2013. A novel fractional-order hyperchaotic system stabilization via fractional
sliding-mode control. Nonlinear Dynam. 74 (3), 721 732.
Yassen, M.T., 2005. Chaos synchronization between two different chaotic systems using active
control. Chaos Solitons Fractals 23 (1), 131 140.
Yin, C., Zhong, S., Chen, W., 2012. Design of sliding mode controller for a class of fractional-
order. Commun. Nonlinear Sci. Numer. Simul. 17 (1), 356 366.
Yin, C., Dadras, S., Zhong, S., Chen, Y., 2013. Control of a novel class of fractional-order cha-
otic systems via adaptive sliding mode control approach. Appl. Math. Model. 37 (4),
2469 2483.
Yu, Y., Li, H., Wang, S., Yu, J., 2009. Dynamic analysis of a fractional-order Lorenz chaotic
system. Chaos Solitons Fractals 42 (2), 1181 1189.
Yuan, J., Shi, B., Ji, W., 2013. Adaptive sliding mode control of a novel class of fractional cha-
otic systems. Adv. Math. Phys. 2013. Available from: https://doi.org/10.1155/2013/576709,
Article ID 576709, 13 pages.
Zhang, H., Ma, X., Li, M., Zou, J., 2005. Controlling and tracking hyperchaotic Rossler system
via active backstepping design. Chaos Solitons Fractals 26 (2), 353 361.
Zhang, H., Huang, W., Wang, Z., Chai, T., 2006. Adaptive synchronization between two differ-
ent chaotic systems with unknown parameters. Phys. Lett. A 350 (5), 363 366.
Zhao, Y., Wang, Y., Zhang, X., Li, H., 2016. Feedback stabilisation control design for fractional
order non-linear systems in the lower triangular form. IET Control Theory & Applications
10 (9), 1061 1068.
Zhou, C., Lai, C.H., Yu, M.Y., 1997. Chaos, bifurcations and periodic orbits of the
Lorenz Stenflo system. Phys. Scripta 55 (4), 394.
Zhu, Q., Azar, A.T., 2015. Complex system modelling and control through intelligent soft
computations, Stud. Fuzziness Soft Computing, Vol. 319. Springer-Verlag, Germany, ISBN
978-3-319-12882-5.
FURTHER READING
Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017a. An Eight-Term 3-D Novel Chaotic System
with Three Quadratic Nonlinearities, its Adaptive Feedback Control and Synchronization.
Studies in Computational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 719 746.

