Page 625 - Mathematical Techniques of Fractional Order Systems
P. 625

Control and Synchronization Chapter | 19  595


             Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., Pham, V.T., 2017. Four-wing attractors in a novel
                chaotic system with hyperbolic sine nonlinearity. Optik   Int. J. Light Electr. Opt. 131
                (2017), 1071 1078.
             Wei, Y., Tse, P.W., Yao, Z., Wang, Y., 2016. Adaptive backstepping output feedback control
                for a class of nonlinear fractional order systems. Nonlinear Dynam. 86 (2), 1047 1056.
             West, B.J., 2007. Fractional calculus in bioengineering. J. Statist. Phys. 126 (6), 1285 1286.
             Yang, J., Hu, G., Xiao, J., 1998. Chaos synchronization in coupled chaotic oscillators with multi-
                ple positive Lyapunov exponents. Phys. Rev. Lett. 80 (3), 496 499.
             Yang, N., Liu, C., 2013. A novel fractional-order hyperchaotic system stabilization via fractional
                sliding-mode control. Nonlinear Dynam. 74 (3), 721 732.
             Yassen, M.T., 2005. Chaos synchronization between two different chaotic systems using active
                control. Chaos Solitons Fractals 23 (1), 131 140.
             Yin, C., Zhong, S., Chen, W., 2012. Design of sliding mode controller for a class of fractional-
                order. Commun. Nonlinear Sci. Numer. Simul. 17 (1), 356 366.
             Yin, C., Dadras, S., Zhong, S., Chen, Y., 2013. Control of a novel class of fractional-order cha-
                otic systems via adaptive sliding mode control approach. Appl. Math. Model. 37 (4),
                2469 2483.
             Yu, Y., Li, H., Wang, S., Yu, J., 2009. Dynamic analysis of a fractional-order Lorenz chaotic
                system. Chaos Solitons Fractals 42 (2), 1181 1189.
             Yuan, J., Shi, B., Ji, W., 2013. Adaptive sliding mode control of a novel class of fractional cha-
                otic systems. Adv. Math. Phys. 2013. Available from: https://doi.org/10.1155/2013/576709,
                Article ID 576709, 13 pages.
             Zhang, H., Ma, X., Li, M., Zou, J., 2005. Controlling and tracking hyperchaotic Rossler system
                via active backstepping design. Chaos Solitons Fractals 26 (2), 353 361.
             Zhang, H., Huang, W., Wang, Z., Chai, T., 2006. Adaptive synchronization between two differ-
                ent chaotic systems with unknown parameters. Phys. Lett. A 350 (5), 363 366.
             Zhao, Y., Wang, Y., Zhang, X., Li, H., 2016. Feedback stabilisation control design for fractional
                order non-linear systems in the lower triangular form. IET Control Theory & Applications
                10 (9), 1061 1068.
             Zhou, C., Lai, C.H., Yu, M.Y., 1997. Chaos, bifurcations and periodic orbits of the
                Lorenz Stenflo system. Phys. Scripta 55 (4), 394.
             Zhu, Q., Azar, A.T., 2015. Complex system modelling and control through intelligent soft
                computations, Stud. Fuzziness Soft Computing, Vol. 319. Springer-Verlag, Germany, ISBN
                978-3-319-12882-5.

             FURTHER READING

             Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017a. An Eight-Term 3-D Novel Chaotic System
                with Three Quadratic Nonlinearities, its Adaptive Feedback Control and Synchronization.
                Studies in Computational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 719 746.
   620   621   622   623   624   625   626   627   628   629   630