Page 620 - Mathematical Techniques of Fractional Order Systems
P. 620

590  Mathematical Techniques of Fractional Order Systems


            Hartley, T.T., Lorenzo, C.F., Qammer, H.K., 1995. Chaos in a fractional order Chua’s system.
               IEEE Trans. Circuits Systems I: Fund. Theory Applicat. 42 (8), 485 490.
            Kebriaei, H., Javad Yazdanpanah, M., 2010. Robust adaptive synchronization of different uncer-
               tain chaotic systems subject to input nonlinearity. Commun. Nonlinear Sci. Numer. Simul.
               [Internet] 15 (2), 430 441. Available from: https://doi.org/10.1016/j.cnsns.2009.04.005.
               Available from: citeulike-article-id:7865896%5Cn.
            Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., 1995. Nonlinear and Adaptive Control Design.
               Wiley, New York.
            Lamamra, K., Azar, A.T., Ben Salah, C., 2017. Chaotic system modelling using a neural network
               with optimized structure, Studies in Computational Intelligence, Vol. 688. Springer-Verlag,
               Germany, pp. 833 856.
            Laskin, N., 2002. Fractional schro ¨dinger equation. Phys. Rev. E 66 (5), 56108.
            Lesieur, M., 2012. Turbulence in fluids, Fluid Mechanics and Its Applications, Vol. 84.
               Springer, Netherlands.
            Li, C., Chen, G., 2004. Chaos and hyperchaos in the fractional-order Ro ¨ssler equations. Phys. A
               Statist. Mech. Applicat. 341 (2004), 55 61.
            Li, C., Peng, G., 2004. Chaos in Chen’s system with a fractional order. Chaos, Solitons Fractals
               22 (2), 443 450.
            Li, Y., Chen, Y., Podlubny, I., 2010. Stability of fractional-order nonlinear dynamic systems:
               Lyapunov direct method and generalized Mittag   Leffler stability. Comput. Math.
               Applicat. 59 (5), 1810 1821.
            Liu, C., Lu, J., 2010. A novel fractional-order hyperchaotic system and its circuit realization. Int.
               J. Modern Phys. B 24 (10), 1299 1307.
            Lorenz, E.N., 1963. Deterministic nonperiodic flow. J. Atmosph. Sci. 20 (2), 130 141.
            Lu, J.G., 2006. Chaotic dynamics of the fractional-order Lu ¨ system and its synchronization.
               Phys. Lett. A 354 (4), 305 311.
            Mathai, A.M., Haubold, H.J., 2008. Special Functions for Applied Scientists. Springer,
               New York, NY.
            Matignon, D., 1996. Stability results for fractional differential equations with applications to
               control processing. Comput. Eng. Syst. Applicat. 2, 963 968.
            Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A., 2017a. Robust adaptive super-
               visory fractional order controller for optimal energy management in wind turbine with
               battery storage. Studies in Computational Intelligence, Vol. 688. Springer-Verlag, Germany,
               pp. 165 202.
            Meghni, B., Dib, D., Azar, A.T., Saadoun, A., 2017b. Effective supervisory controller to extend
               optimal energy management in hybrid wind turbine under energy and reliability constraints.
               Int. J. Dynam. Control, Springer. Available from: https://doi.org/10.1007/s40435-016-0296-0.
            Meghni, B., Dib, D., Azar, A.T., 2017c. A Second-order sliding mode and fuzzy logic control to
               Optimal Energy Management in PMSG Wind Turbine with Battery Storage. Neural
               Comput. Applicat. 28 (6), 1417 1434. Available from: https://doi.org/10.1007/s00521-015-
               2161-z.
            Miller, K.S., Ross, B., 1993. An Introduction to the Fractional Calculus and Fractional
               Differential Equations. John Wiley & Sons, New York, NY.
            Mishra, S.K., Chandra, D., 2014. Stabilization and tracking control of inverted pendulum using
               fractional order PID controllers. J. Eng. 2014. Available from: https://doi.org/10.1155/2014/
               752918, Article ID 752918, 9 pages.
            Mohadeszadeh, M., Delavari, H., 2017. Synchronization of fractional-order hyper-chaotic sys-
               tems based on a new adaptive sliding mode control. Int. J. Dynam. Control 5 (1), 124 134.
   615   616   617   618   619   620   621   622   623   624   625