Page 619 - Mathematical Techniques of Fractional Order Systems
P. 619
Control and Synchronization Chapter | 19 589
Azar, A.T., Zhu, Q., 2015. Advances and Applications in Sliding Mode Control systems. Studies in
Computational Intelligence, Vol. 576. Springer-Verlag, Germany, ISBN 978-3-319-11172-8.
Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and
Synchronization of Chaotic Systems. Studies in Computational Intelligence, Vol. 688.
Springer-Verlag, Germany, ISBN 978-3-319-50248-9.
Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.T., Radwan, A.G., et al.,
2017b. A novel chaotic system without equilibrium: dynamics, synchronization and circuit
realization. Complexity 2017. Available from: https://doi.org/10.1155/2017/7871467,
Article ID 7871467, 11 pages.
Azar, A.T., Ouannas, A., Singh, S., 2017c. Control of new type of fractional chaos synchroniza-
tion, Proceedings of the International Conference on Advanced Intelligent Systems and
Informatics 2017, Advances in Intelligent Systems and Computing series, Vol. 639.
Springer-Verlag, Germany, pp. 47 56.
Borah, M., Singh, P.P., Roy, B.K., 2016. Improved chaotic dynamics of a fractional-order
system, its chaos-suppressed synchronisation and circuit implementation. Circuit. Syst.
Signal Proc. 35 (6), 1871 1907.
Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T., 2016a. Fuzzy adaptive synchronization
of uncertain fractional-order chaotic systems. In: Azar, A.T., Vaidyanathan, S. (Eds.),
Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft
Computing, Vol. 337. Springer-Verlag, Germany.
Boulkroune, A., Hamel, S., Azar, A.T., 2016b. Fuzzy control-based function synchronization of
unknown chaotic systems with dead-zone input, Advances in Chaos Theory and Intelligent
Control. Studies in Fuzziness and Soft Computing, Vol. 337. Springer-Verlag, Germany.
Carlson, G.E., Halijak, C.A., 1964. Approximation of fractional capacitors (1/s)^1/n by a regular
newton process. IEEE Trans. Circuit Theory 11 (2), 210 213.
Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R., 2012. Control of a class of fractional-order chaotic
systems via sliding mode. Nonlinear Dynam. 67 (1), 893 901.
Chialvo, D.R., Gilmour, R.F., Jalife, J., 1990. Low dimensional chaos in cardiac tissue. Nature
343 (6259), 653 657.
Ding, D., Qi, D., Wang, Q., 2015. Non-linear Mittag Leffler stabilisation of commensurate
fractional-order non-linear systems. IET Control Theory Applicat. 9 (5), 681 690.
Dorcak, L., 1994. Numerical models for the simulation of the fractional-order control systems.
UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Koˇ sice, Slovakia.
Feeny, B.F., Yuan, C.-M., Cusumano, J.P., 2001. Parametric identification of an experimental
magneto-elastic oscillator. J. Sound Vibration 247 (5), 785 806.
Field, R.J., Schneider, F.W., 1989. Oscillating chemical reactions and nonlinear dynamics.
J. Chem. Educ 66 (3), 195.
¸
da Graca Marcos, M., Duarte, F.B.M., Machado, J.A.T., 2008. Fractional dynamics in the trajec-
tory control of redundant manipulators. Commun. Nonlinear Sci. Numer. Simul. 13 (9),
1836 1844.
Grassi G., Ouannas A., Azar A.T., Radwan A.G., Volos C., Pham V.T., et al., 2017. Chaos
Synchronisation Of Continuous Systems Via Scalar Signal. The 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6 May 2017,
Thessaloniki Greece.
Grigorenko, I., Grigorenko, E., 2003. Chaotic dynamics of the fractional Lorenz system. Phys.
Rev. Lett. 91 (3), 34101.
Hardy, H.H., Beier, R.A., 1994. Fractals in Reservoir Engineering. Publishing Company, River
Edge, NJ.

