Page 621 - Mathematical Techniques of Fractional Order Systems
P. 621
Control and Synchronization Chapter | 19 591
Mormann, F., Lehnertz, K., David, P., Elger, C.E., 2000. Mean phase coherence as a measure
for phase synchronization and its application to the EEG of epilepsy patients. Phys. D
Nonlinear Phenom. 144 (3-4), 358 369.
Nakamura, Y., Sekiguchi, A., 2001. The chaotic mobile robot. IEEE Trans. Robot. Automat. 17
(6), 898 904.
Oldham, K.B., Spanier, J., 1974. The Fractional Calculus: Theory and Applications of
Differentiation and Integration to Arbitrary Order. Dover Publications Inc, United States.
Ott, E., Grebogi, C., Yorke, J.A., 1990. Controlling chaos. Phys. Rev. Lett. 64 (11), 1196 1199.
Ouannas, A., Azar, A.T., Abu-Saris, R., 2016a. A new type of hybrid synchronization between
arbitrary hyperchaotic maps. Int. J. Mach. Learning Cybernetics. Available from: https://doi.
org/10.1007/s13042-016-0566-3.
Ouannas, A., Azar, A.T., Radwan, A.G., 2016b. On Inverse Problem of Generalized
Synchronization Between Different Dimensional Integer-Order and Fractional-Order Chaotic
Systems. The 28th International Conference on Microelectronics, IEEE, December 17-20,
2016, Cairo, Egypt.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017a. On new fractional inverse matrix
projective synchronization schemes, Studies in Computational Intelligence, Vol. 688.
Springer-Verlag, Germany, pp. 497 524.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017b. Fractional inverse generalized chaos
synchronization between different dimensional systems, Studies in Computational
Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 525 551.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017c. A new method to synchronize frac-
tional chaotic systems with different dimensions, Studies in Computational Intelligence,
Vol. 688. Springer-Verlag, Germany, pp. 581 611.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017d. Study on coexistence of different types
of synchronization between different dimensional fractional chaotic systems, Studies in
Computational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 637 669.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017e. Generalized synchronization of differ-
ent dimensional integer-order and fractional order chaotic systems, Studies in Computational
Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 671 697.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017f. On a simple approach for Q-S synchroniza-
tion of chaotic dynamical systems in continuous-time. Int. J. Comput. Sci. Math. 8 (1),
20 27.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017g. New hybrid synchronization schemes based
on coexistence of various types of synchronization between master-slave hyperchaotic sys-
tems. Int. J. Comput. Applicat. Technol. 55 (2), 112 120.
Ouannas, A., Azar, A.T., Ziar, T., 2017h. On inverse full state hybrid function projective
synchronization for continuous-time chaotic dynamical systems with arbitrary dimensions.
Differ. Equat. Dynam. Syst. Available from: https://doi.org/10.1007/s12591-017-0362-x.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017i. A robust method for new fractional hybrid
chaos synchronization. Math. Methods Appl. Sci. 40 (5), 1804 1812. Available from:
https://doi.org/10.1002/mma.4099.
Ouannas, A., Grassi, G., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.T., et al., 2017j. Dead-
Beat Synchronization Control in Discrete-Time Chaotic Systems. The 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6 May 2017,
Thessaloniki Greece.
Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., 1997. Fundamentals of synchronization in
chaotic systems, concepts, and applications. Chaos (Woodbury, N.Y.) 7 (4), 520 543.

