Page 624 - Mathematical Techniques of Fractional Order Systems
P. 624

594  Mathematical Techniques of Fractional Order Systems


            Vaidyanathan, S., Azar, A.T., 2016c. Qualitative study and adaptive control of a novel 4-D
               hyperchaotic system with three quadratic nonlinearities, Studies in Fuzziness and Soft
               Computing, Vol. 337. Springer-Verlag, Germany, pp. 179 202.
            Vaidyanathan, S., Azar, A.T., 2016d. A novel 4-D four-wing chaotic system with four quadratic
               nonlinearities and its synchronization via adaptive control method, Advances in Chaos
               Theory and Intelligent Control. Studies in Fuzziness and Soft Computing, Vol. 337.
               Springer-Verlag, Germany, pp. 203 224.
            Vaidyanathan, S., Azar, A.T., 2016e. Adaptive control and synchronization of Halvorsen
               Circulant Chaotic Systems. Advances in chaos theory and intelligent control, Studies in
               Fuzziness and Soft Computing, Vol. 337. Springer-Verlag, Germany, pp. 225 247.
            Vaidyanathan, S., Azar, A.T., 2016f. Adaptive Backstepping Control and Synchronization of a
               Novel 3-D Jerk System with an Exponential Nonlinearity. Advances in Chaos Theory and
               Intelligent Control. Studies in Fuzziness and Soft Computing, Vol. 337. Springer-Verlag,
               Germany, pp. 249 274.
            Vaidyanathan, S., Azar, A.T., 2016g. Generalized Projective Synchronization of a Novel
               Hyperchaotic Four-Wing System via Adaptive Control Method. Advances in Chaos Theory
               and Intelligent Control. Studies in Fuzziness and Soft Computing, Vol. 337. Springer-
               Verlag, Germany, pp. 275 296.
            Vaidyanathan, S., Sampath, S., Azar, A.T., 2015a. Global chaos synchronisation of identical cha-
               otic systems via novel sliding mode control method and its application to Zhu system.
               IJMIC 23 (1), 92 100.
            Vaidyanathan, S., Azar, A.T., Rajagopal, K., Alexander, P., 2015b. Design and SPICE imple-
               mentation of a 12-term novel hyperchaotic system and its synchronization via active control
               (2015). IJMIC 23 (3), 267 277.
            Vaidyanathan, S., Idowu, B.A., Azar, A.T., 2015c. Backstepping controller design for the global
               chaos synchronization of Sprott’s Jerk Systems. In: Azar, A.T., Vaidyanathan, S. (Eds.),
               Chaos Modeling and Control Systems Design, Studies in Computational Intelligence, Vol.
               581. Springer-Verlag GmbH Berlin, Heidelberg, pp. 39 58. Available from: http://dx.doi.
               org/10.1007/978-3-319-13132-0_3.
            Vaidyanathan, S., Zhu, Q., Azar, A.T., 2017b. Adaptive Control of a Novel Nonlinear Double
               Convection Chaotic System. Studies in Computational Intelligence, Vol. 688. Springer-
               Verlag, Germany, pp. 357 385.
            Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017c. Hyperchaos and Adaptive Control of a Novel
               Hyperchaotic System with Two Quadratic Nonlinearities. Studies in Computational
               Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 773 803.
            Vinagre, B.M., Chen, Y.Q., Petra ´ˇ s, I., 2003. Two direct Tustin discretization methods for
               fractional-order differentiator/integrator. J. Franklin Institute 340 (5), 349 362.
            Wang, C., Ge, S.S., 2001. Synchronization of two uncertain chaotic systems via adaptive back-
               stepping. Int. J. Bifurcation Chaos 11 (6), 1743 1751. Available at: http://www.worldscien-
               tific.com/doi/abs/10.1142/S0218127401002985.
            Wang, H.H., Sun, K.H., He, S.B., 2014. Dynamic analysis and implementation of a digital signal
               processor of a fractional-order Lorenz Stenflo system based on the Adomian decomposition
               method. Phys. Scripta 90 (1), 15206.
            Wang, J., Zhang, Y., 2006. Designing synchronization schemes for chaotic fractional-order uni-
               fied systems. Chaos Solitons Fractals 30 (5), 1265 1272.
            Wang, J., Xiong, X., Zhang, Y., 2006. Extending synchronization scheme to chaotic fractional-
               order Chen systems. Phys. A Statist. Mech. Applicat. 370 (2), 279 285.
   619   620   621   622   623   624   625   626   627   628   629