Page 682 - Mathematical Techniques of Fractional Order Systems
P. 682

Fractional Order Chaotic Systems Chapter | 21  653



                               x y z t t t
                  20
              Series of fractional-order  Rössler’s system  10 5 0
                  15



                  –5
                 –10
                      0         20        40         60        80        100
                                               Time
             FIGURE 21.15 Simulation result of all fractional order Ro ¨ssler’s system (21.21) variables ver-
             sus time for parameters (a 5 0.5, b 5 0.2, c 5 10), orders p 1 5 p 2 5 p 3 5 0.95, and initial condi-
             tions (x 0 520.5, y 0 5 0, z 0 5 1).























             FIGURE 21.16 Simulation result of recurrence diagram of the fractional order Ro ¨ssler’s sys-
             tem (21.21) in i j plane for parameters (a 5 0.5, b 5 0.2, c 5 10), orders p 1 5 p 2 5 p 3 5 0.95,
             and initial conditions (x 0 520.5, y 0 5 0, z 0 5 1).




             in Fig. 21.14. All model variables are represented versus time in Fig. 21.15.
             The related recurrence diagram is ported in Fig. 21.16.
                In a second case of the same fractional order Ro ¨ssler’s system (21.21)
             with even values of the commensurate orders p 1 5 p 2 5 p 3 5 p 5 0.95, if
             parameters are fixed as (a 5 2.5, b 5 5, c 5 4), initial conditions as (x 0 5 1,
             y 0 5 1, z 0 5 1), and computational time 100s for time step h 5 0.01, then the
             fractional order Ro ¨ssler’s system (21.21) exhibits a strange attractors and the
             chaotic butterfly-effect which are given in Fig. 21.17. All model variables
             are represented versus time in Fig. 21.18. The related recurrence diagram is
             depicted in Fig. 21.19.
   677   678   679   680   681   682   683   684   685   686   687