Page 681 - Mathematical Techniques of Fractional Order Systems
P. 681

652  Mathematical Techniques of Fractional Order Systems


            parameters (a 5 0.5, b 5 0.2, c 5 10) and orders p 1 5 p 2 5 p 3 5 p,using the
            relation (21.15), we can verify that for 0.9 # p # 1 the system is chaotic
            with a positive Lyapunov exponent 0.0368. The minimal commensurate
            order from which the system (21.21) can exhibit a chaotic behavior is
            p . 0.839.
               For first example, if it is assumed that the commensurate order has an
            arbitrary fixed values p 1 5 p 2 5 p 3 5 p 5 0.95, parameters are chosen as
            (a 5 0.5, b 5 0.2, c 5 10), initial conditions are selected as (x 0 520.5,
            y 0 5 0, z 0 5 1), and computational time 100s for time step h 5 0.01, then the
            fractional order Ro ¨ssler’s system (21.21) satisfies the condition of presence
            of chaotic behavior as is visualized in Figs. 21.13 21.15. The 3D state space
            numerical simulation of the system (21.21) for initial conditions (x 0 520.5,
            y 0 5 0, z 0 5 1) is illustrated in Fig. 21.13. The positively estimating maximal
            Lyapunov exponent for various value of embedding dimension is visualized





                 25
                 20
                 15
                z t
                 10                                                  10  y t
                                                                  5
                                                               0
                  5                                        –5
                                                        –10
                  0                                 –15
                   –10   –5     0     5     10    15
                                   x t
            FIGURE 21.13 Simulation result of the fractional order Ro ¨ssler’s system (21.21) in state space
            for parameters (a 5 0.5, b 5 0.2, c 5 10), orders p 1 5 p 2 5 p 3 5 0.95, and initial conditions
            (x 0 520.5, y 0 5 0, z 0 5 1).


                                Estimating maximal Lyapunov exponent

                 4
                 3
               S(t)  2

                                                     Embedding dimension
                 1                                           5
                                                             6
                 0                                           7
                    0        5       10      15       20      25       30
                                            Time t
            FIGURE 21.14 Simulation result of the maximal Lyapunov exponent of fractional order
            Ro ¨ssler’s system (21.21) for parameters (a 5 0.5, b 5 0.2, c 5 10), orders p 1 5 p 2 5 p 3 5 0.95,
            and initial conditions (x 0 520.5, y 0 5 0, z 0 5 1).
   676   677   678   679   680   681   682   683   684   685   686