Page 113 - Matrices theory and applications
P. 113

5. Nonnegative Matrices
                              96
                                            n
                               20. Let a ∈ IR be given, a =(a 1 ,... ,a n ).
                                    (a) Show that
                                                                      n
                                                        C(a):= {b ∈ IR | b   a}
                                       is a convex compact set. Characterize its extremal points.
                                   (b) Show that
                                                  Y (a):= {M ∈ Sym (IR) | Sp M   a}
                                                                    n
                                       is a convex compact set. Characterize its extremal points.
                                    (c) Deduce that Y (a) is the closed convex hull (actually the convex
                                       hull) of the set
                                                  X(a):= {M ∈ Sym (IR) | Sp M = a}.
                                                                   n

                                   (d) Set α = s n (a)/n and a := (α,... ,α). Show that a ∈ C(a), and

                                       that b ∈ C(a)=⇒ b ≺ a .

                                    (e) Characterize the set

                                                     {M ∈ Sym (IR) | Sp M ≺ a }.
                                                               n
   108   109   110   111   112   113   114   115   116   117   118