Page 148 - Matrix Analysis & Applied Linear Algebra
P. 148

142              Chapter 3                                             Matrix Algebra

                                        Observe that U is the end product of Gaussian elimination and has the
                                    pivots on its diagonal, while L has 1’s on its diagonal. Moreover, L has the
                                    remarkable property that below its diagonal, each entry ' ij is precisely the
                                    multiplier used in the elimination (3.10.1) to annihilate the (i, j)-position.
                                        This is characteristic of what happens in general. To develop the gen-
                                    eral theory, it’s convenient to introduce the concept of an elementary lower-
                                    triangular matrix, which is defined to be an n × n triangular matrix of the
                                    form
                                                                           T
                                                                T k = I − c k e ,
                                                                           k
                                    where c k is a column with zeros in the first k positions. In particular, if
                                                                                             
                                                                   10           0    0  ··· 0
                                              0
                                                                       ···
                                                                  01    ···    0    0  ··· 0 
                                           0                     .  .  .     .    .       .  
                                                                  .
                                             .                  .  . .  . .  . .  . .     . 
                                              .
                                             .                                             . 
                                                  ,  then T k =  00    ···    1    0  ··· 0  .  (3.10.2)
                                                                                           
                                      c k = 
                                                                 
                                           µ k+1                00    ···  −µ k+1  1       
                                             .                                        ··· 0 
                                              .                   .  .         .    .   .
                                             .                   .  .        .    .  .    .  
                                                                   .  .         .    .    .  . . 
                                             µ n
                                                                   00    ···  −µ n   0  ··· 1
                                                     T
                                    By observing that e c k =0, the formula for the inverse of an elementary matrix
                                                     k
                                    given in (3.9.1) produces
                                                                                       
                                                               10    ···  0    0  ··· 0
                                                             01     ···  0    0  ··· 0 
                                                             . .  . .  . .  . .  . .  .  
                                                            
                                                             .   .   .    .   .       . 
                                                                                       . 
                                             −1          T                             
                                            T   = I + c k e =  00   ···  1    0  ··· 0  ,       (3.10.3)
                                             k           k
                                                             00     ··· µ k+1  1  ··· 0 
                                                                                        
                                                            
                                                              .  .        .   .  .    .  
                                                             .   .        .   .   .   . 
                                                               .  .        .   .    .  .
                                                               00    ···  µ n  0  ··· 1
                                    which is also an elementary lower-triangular matrix. The utility of elementary
                                    lower-triangular matrices lies in the fact that all of the Type III row operations
                                    needed to annihilate the entries below the k th  pivot can be accomplished with
                                    one multiplication by T k . If
                                                                                      
                                                              ∗∗· · ·    α 1  ∗· · ·  ∗
                                                             0  ∗· · ·  α 2  ∗· · ·  ∗ 
                                                             .  .   .    .   .
                                                              .  .  .    .   .       .  
                                                             .  .   .    .   .       . 
                                                                                      . 
                                                    A k−1 =  00    ···  α k  ∗· · ·  ∗ 
                                                                                       
                                                            
                                                             00    ··· α k+1  ∗· · ·  ∗ 
                                                            
                                                                                       
                                                              .  .       .   .       .  
                                                             .  .        .   .  .  .
                                                              .  .        .   .    .  . . 
                                                              00    ···  α n  ∗· · ·  ∗
   143   144   145   146   147   148   149   150   151   152   153