Page 149 - Matrix Analysis & Applied Linear Algebra
P. 149

3.10 The LU Factorization                                                          143

                                    is the partially triangularized result after k − 1 elimination steps, then

                                                       T  	                T
                                      T k A k−1 = I − c k e k  A k−1 = A k−1 − c k e A k−1
                                                                           k
                                                                                                  
                                                  ∗∗· · ·   α 1  ∗· · · ∗                        0
                                                 0  ∗· · ·  α 2  ∗· · · ∗                     0   
                                                 . .  . .  .  .  . .  . .  . .                . .  
                                                                         
                                                
                                                                                            
                                                 .  .   .   .  .       .                      .   
                                                                                                     
                                                                                            
                                                
                                             =  00     ··· α k  ∗· · · ∗  ,   where  c k =    0   
                                                                         
                                                                                                     
                                                 00    ···  0  ∗· · · ∗                    α k+1 /α k 
                                                                                                  
                                                  .  .      .  .  .    .                      .   
                                                 .  .       .  .   .   .                      .   
                                                  .  .       .  .    .  .                        .
                                                  00    ···  0  ∗· · · ∗                       α n /α k
                                    contains the multipliers used to annihilate those entries below α k . Notice that
                                                                                            T
                                    T k does not alter the first k − 1 columns of A k−1 because e [A k−1 ]  =0
                                                                                            k      ∗j
                                    whenever j ≤ k−1. Therefore, if no row interchanges are required, then reducing
                                    A to an upper-triangular matrix U by Gaussian elimination is equivalent to
                                    executing a sequence of n − 1 left-hand multiplications with elementary lower-
                                    triangular matrices. That is, T n−1 ··· T 2 T 1 A = U, and hence
                                                                 −1  −1     −1
                                                           A = T 1  T 2  ··· T n−1 U.             (3.10.4)
                                                              T
                                    Making use of the fact that e c k = 0 whenever j ≤ k and applying (3.10.3)
                                                              j
                                    reveals that


                                        T −1 T −1  ··· T −1  = I + c 1 e T  	  I + c 2 e T  	  ··· I + c n−1 e T
                                          1   2     n−1          1         2              n−1     (3.10.5)
                                                                       T
                                                                 T
                                                        = I + c 1 e + c 2 e + ··· + c n−1 e T  .
                                                                 1     2             n−1
                                    By observing that
                                                             00    ···   0    0  ··· 0
                                                                                      
                                                           00     ···   0    0  ··· 0 
                                                             .  .  .     .    .       .  
                                                          
                                                           .   .  .     .    .       . 
                                                           .   .   .    .    .       . 
                                                       T
                                                    c k e =  00   ···   0    0  ··· 0  ,
                                                          
                                                                                       
                                                       k
                                                           00     ··· ' k+1,k  0  ··· 0 
                                                                                       
                                                          
                                                            .  .        .    .  .    .  
                                                           .   .        .    .   .   . 
                                                             .  .        .    .    .  .
                                                             00    ···  ' nk  0  ··· 0
                                    where the ' ik ’s are the multipliers used at the k th  stage to annihilate the entries
                                    below the k th  pivot, it now follows from (3.10.4) and (3.10.5) that
                                                                  A = LU,
   144   145   146   147   148   149   150   151   152   153   154