Page 140 - Mechanical Engineer's Data Handbook
P. 140

THERMODYNAMICS  AND HEAT  TRANSFER                                                129

                 1                                    Conduction through composite cylinder fluid  to
          U=                                          fluid
              1
                 x
             -+-+-  1
             ha    hb
                                                      A typical example is a lagged pipe.
          4=UA(ta-tb)
              l    l   x                              q=-
          R =-  +-  +-=  R, + R, + R                       R
             h,A  h,A  kA
          Conduction through composite wall
          q=UA(t,-t,)
                       1
          U=
             (R,+Rl+R2+. . . R,)A
          R=Ra+R,+R2+.  . . R,

                         R’=~,A,, etc.
          where: R, =A,
                              x2
                     X
                    k,Al



                                                      3.14.4   Heat transfer from fins

                                                      The heat flow depends on the rate of conduction along
                                                      the fin and on the surface heat-transfer coefficient. The
                                                      theory involves the use of  hyperbolic functions.
                                      cylinder wall   Fin of  constant cross-section with insulated tip

             2nk(t, -t2)L  kA,                        Let:
                       -
          4=           --   (t,--t,)                   L = fin length
                  r2      X
                In -                                   A =fin  cross-sectional area
                  rl
                                                       P=perimeter  of  fin
          Al=2nrlL; A2=2nr2L; Am=- A2-A1               k =conductivity
                                   In ‘.               h = surface heat-transfer  coefficient
                                     rl                ta = air temperature
          x = r2 - r,, L = Length of cylinder          t, = fin root temperature
                                                      Heat flow from fin, 4= kA(t,-t,)m  tanhmL

                                                      where: m=&.
   135   136   137   138   139   140   141   142   143   144   145