Page 32 - Mechanical Engineers' Handbook (Volume 2)
P. 32

3 Statistics in the Measurement Process  21

                           Example 6  Confidence Limits on a Regression Line. Calibration data for a copper–
                           constantan thermocouple are given:
                                Temperature: x   [0, 10, 20, 30, 40 50, 60, 70, 80, 90, 100]  C
                                Voltage:    y   [ 0.89,  0.53,  9.15,  0.20, 0.61, 1.03, 1.45, 1.88, 2.31,

                                                2.78, 3.22] mV
                           If the variation of y is expected to be linear over the range of x and the uncertainty in
                           temperature is much less than the uncertainty in voltage, then:
                              1. Determine the linear relation between y and x.
                              2. Test the goodness of fit at the 95% confidence level.
                              3. Determine the 90% confidence limits of points on the line by the slope-centroid
                                 technique.
                              4. Determine the 90% confidence limits on the intercept of the regression line.
                              5. Determine the 90% confidence limits on a future estimated point of temperature at
                                 120 C.
                              6. Determine the 90% confidence limits on the whole line.
                              7. How much data would be required to determine the centroid of the voltage values
                                 within 1% at the 90% confidence level?
                              The calculations are as follows:
                                               x   50.0   y   1.0827  y   a   bx
                                              x   550     y   11.91     xy   1049.21
                                                            i
                                               i
                                                                         i i
                                            (x )   38,500.0   (y )   31.6433
                                               2
                                                                 2
                                                                i
                                              i
                                                                            2
                                                                                  2
                                               2
                                                     2
                                        (x   x)    X   11,000.00     (y   y)    Y   18.7420
                                                                       i
                                                     i
                                                                                  i
                                          i
                                   (x   x)(y   y)    XY   453.70
                                     i
                                                     i i
                                           i
                                               2
                                        (y   ˆy )   0.0299
                                          i
                                              i
                              1. b    XY/ X   453.7/11,000   0.0412
                                            2
                                 a   y   bx   1.0827   (0.0412)(50.00)   1.0827   2.0600
                                    0.9773
                                                2
                                                         2
                                                                           2
                              2. r      (ˆy   y)/ (y   y)    1    (y   ˆy )/ (y   y) 2
                                  exp               i                 i   i    i
                                       XY/  X  Y   0.998
                                                    2
                                                2
                                 r Table    r(	,  )   r(0.05,9)   0.602
                                 P[r exp    r Table ]   	 with H of no correlation; therefore reject H and infer
                                                      0
                                                                                   0
                                               significant correlation
                              3. t   t( , v)   t(0.90,9)   1.833 (see Ref. 6)
                                 ˆ   2 y,x     (y   ˆy )/    0.0299/9   0.00333
                                               2
                                              i
                                          i
   27   28   29   30   31   32   33   34   35   36   37