Page 474 - Mechanical Engineers' Handbook (Volume 2)
P. 474

4 z-Transforms  465

            Table 2 Table of z-Transforms  a
            No.         F(s)                 ƒ(nT)                              F(z)
              1         —           1, n   0; 0, n 	 0          1
              2         —           1, n   k;0, n 	 k           z  k
                         1                                       z
              3                     1(nT)
                         s                                      z   1
                         1                                        Tz
              4                     nT
                         s  2                                   (z   1) 2
                                                                 2
                         1          1                           Tz(z   1)
              5                       (nT) 2
                         s  3       2!                          2(z   1) 3
                                                                    2
                         1          1                           Tz(z   4z   1)
                                                                 3
              6                       (nT) 3
                         s  4       3!                          6   (z   1) 4
                         1             ( 1) m 1    m 1             ( 1) m 1    m 1  z
              7                     lim           e  unT        lim
                        s  m        a→0  (m   1)!  a m 1        a→0  (m   1)!  a m 1  z   e  aT
                         1                                        z
              8                     e  anT
                       s   a                                    z   e  aT
                         1                                       Tze  aT
              9                     nTe  anT
                                                                      )
                      (s   a) 2                                 (z   e  aT 2
                         1          1                           T  2   z(z   e  aT )
                                        2  anT
             10                      (nT) e                       (e  aT )
                      (s   a) 3     2                           2      (z   e  aT 3
                                                                             )
                         1          ( 1) m 1    m 1             ( 1) m 1    m 1  z
             11                                (e  anT )
                      (s   a) m     (m   1)!  a m 1             (m   1)!  a m 1  z   e  aT
                         a                                        z(1   e  aT )
             12                     1   e  anT
                      s(s   a)                                  (z   1)(z   e  aT )
                         a          1                           z[(aT   1   e  aT )z   (1   e  aT    aTe  aT )]
             13                      (anT   1   e  anT )
                                                                              2
                      s (s   a)     a                                   a(z   1) (z   e  aT )
                       2
                       b   a                                      (e  aT    e  bT )z
             14                     (e  anT    e  bnT )
                    (s   a)(s   b)                              (x   e  aT )(z   e  bT )
                         s                                      z[z   e  aT (1   aT)]
             15                     (1   anT)e  anT
                                                                         )
                      (s   a) 2                                    (z   e  aT 2
                        a  2                                    z[z(1   e  aT    aTe  aT )   e  2aT    e  aT    aTe  aT ]
             16                     1   e  anT (1   anT)
                                                                                      )
                      s(s   a) 2                                           (z   1)(z   e  aT 2
                      (b   a)s                                  z[z(b   a)   (be  aT    ae  bT )]
             17                     be  bnT    ae  anT
                    (s   a)(s   b)                                 (z   e  aT )(z   e  bT )
                         a                                          z sin aT
             18                     sin anT
                       2
                                                                2
                      s   a  2                                  z   (2 cos aT)z   1
                         s                                        z(z   cos aT)
             19                     cos anT
                                                                2
                       2
                      s   a  2                                  z   (2 cos aT)z   1
                       s   a                                       z(z   e  aT  cos bT)
             20                     e  anT  cos bnT
                                                                2
                          2
                    (s   a)   b 2                               z   2e  aT (cos bT)z   e  2eT
                         b          e  anT  sin bnT                  ze  aT  sin bT
             21
                    (s   a)   b 2                               z   2e  aT (cos bT)z   e  2aT
                                                                2
                          2
                        2
                      a   b 2       1   e          a sin bnT	            z(Az   B)
             22                          anT  cos bnT
                                                                      2
                          2
                              2
                    s((s   a)   b )                b            (z   1)(z   2e  aT (cos bT)z   e  2aT )
                                                                                 a
                                                                A   1   e  aT  cos bT    e  aT  sin bT
                                                                                 b
                                                                         a
                                                                B   e  2aT     e  aT  sin bT   e  aT  cos bT
                                                                         b
            a F(s) is the Laplace transform of ƒ(t) and F(z) is the transform of ƒ(nT). Unless otherwise noted, ƒ(t)   0, t   0, and the region of convergence
            of F(z) is outside a circle r    z  such that all poles of F(z) are inside r.
   469   470   471   472   473   474   475   476   477   478   479