Page 90 - Singiresu S. Rao-Mechanical Vibrations in SI Units, Global Edition-Pearson (2017)
P. 90

1.10  harmoniC motion    87
                                    Equations (1.39) and (1.40) yield
                                                                             2      3
                                                                         1iu2   1iu2
                                                1cos u + i sin u2 = 1 + iu +  +       + g = e  iu      (1.41)
                                                                          2!      3!
                                    and
                                                                            2      3
                                                                         1iu2   1iu2
                                               1cos u - i sin u2 = 1 - iu +   -      + g = e  -iu      (1.42)
                                                                          2!     3!
                                    Thus Eq. (1.36) can be expressed as
                                                            >
                                                           X    = A1cos u + i sin u2 = Ae iu           (1.43)

                 1.10.3             Complex numbers are often represented without using a vector notation as
                 Complex                                           z = a + ib                          (1.44)
                 algebra
                                    where a and b denote the real and imaginary parts of z. The addition, subtraction, multi-
                                    plication, and division of complex numbers can be achieved by using the usual rules of
                                    algebra. Let
                                                              z   = a + ib = A e iu 1                  (1.45)
                                                                              1
                                                                    1
                                                               1
                                                                         1
                                                              z   = a + ib = A e iu 2                  (1.46)
                                                                              2
                                                                    2
                                                               2
                                                                         2
                                    where
                                                                        2
                                                                   2
                                                           A = 2a + b ;   j = 1, 2                     (1.47)
                                                                        j
                                                            j
                                                                   j
                                    and
                                                                      b j
                                                                  -1
                                                           u = tan ¢  a j ≤;   j = 1, 2                (1.48)
                                                            j
                                    The sum and difference of z  and z  can be found as
                                                               2
                                                          1
                                                    z + z = A e iu 1  + A e iu 2  = 1a + ib 2 + 1a + ib 2
                                                                   2
                                                                                 1
                                                                                            2
                                                                                       2
                                                       2
                                                                            1
                                                  1
                                                            1
                                                          = 1a + a 2 + i1b + b 2                       (1.49)
                                                                        1
                                                                             2
                                                                 2
                                                            1
                                                    z - z = A e iu 1  - A e iu 2  = 1a + ib 2 - 1a + ib 2
                                                                            1
                                                  1
                                                                                            2
                                                                                       2
                                                                                 1
                                                       2
                                                                   2
                                                            1
                                                          = 1a - a 2 + i1b - b 2                       (1.50)
                                                                 2
                                                                        1
                                                                             2
                                                            1
                                                                                    >
                 1.10.4             Using complex-number representation, the rotating vector X    of Fig. 1.47 can be written as
                                                                     >
                 operations on                                     X    = Ae ivt                       (1.51)
                 harmonic                                                                     >
                 Functions          where v denotes the circular frequency (rad/s) of rotation of the vector X    in counterclock-
                                    wise direction. The differentiation of the harmonic motion given by Eq. (1.51) with respect
                                    to time gives
   85   86   87   88   89   90   91   92   93   94   95