Page 92 - Singiresu S. Rao-Mechanical Vibrations in SI Units, Global Edition-Pearson (2017)
P. 92

1.10  harmoniC motion    89
                                        y

                                     Im
                                                                           X
                                                                               A 2  sin u
                                             X 2
                                                                  X
                                    v                              1
                                                                       A 2  cos u
                                                    a
                                             u
                                                     vt
                                       O                                               x
                                                       A cos (vt   a)              Re
                                    FiGure 1.50  Vectorial addition of harmonic functions.


                                                                                            >    >
                                    Since the original functions are given as real components, the sum X    + X     is given by
                                                                                                  2
                                                                                            1
                                        >
                                    Re1X   2 = A cos1vt + a2.

                                    addition of harmonic motions
                 example 1.18
                                    Find the sum of the two harmonic motions x 1 1t2 = 10 cos vt and x 2 1t2 = 15 cos1vt + 22.

                                    Solution:  Method 1: By using trigonometric relations: Since the circular frequency is the same for
                                    both x 1 1t2 and x 2 1t2, we express the sum as
                                                         x1t2 = A cos1vt + a2 = x 1 1t2 + x 2 1t2       (E.1)
                                    That is,

                                           A1cos vt cos a - sin vt sin a2  = 10 cos vt + 15 cos1vt + 22
                                                                    = 10 cos vt + 151cos vt cos 2 - sin vt sin 22  (E.2)
                                    That is,
                                          cos vt1A cos a2 - sin vt1A sin a2  =  cos vt110 + 15 cos 22 - sin vt115 sin 22  (E.3)

                                    By equating the corresponding coefficients of cos vt and sin vt on both sides, we obtain
                                                         A cos a = 10 + 15 cos 2
                                                         A sin a = 15 sin 2
                                                                             2          2
                                                             A = 2110 + 15 cos 22 + 115 sin 22
                                                              = 14.1477                                 (E.4)
                                    and
                                                              15 sin 2
                                                         -1
                                                   a = tan ¢          ≤ = 74.5963  (or 1.30 radians)    (E.5)
                                                            10 + 15 cos 2
   87   88   89   90   91   92   93   94   95   96   97