Page 186 - Mechanics of Asphalt Microstructure and Micromechanics
P. 186

178   Ch a p t e r  S i x


              Linear Kinematic Hardening
                                                         ij (
                                               f ∂  p 3  S − α ij)
                                     dε =  dε p  =  dε
                                       p
                                       ij    ∂ σ      2   Y
                                               ij                                (6-73)
                 Where the yield criterion is:
                                                 ij (
                                              3
                                    f (σα  ) =  S − α ij)( S − α ij) −  Y
                                       ,
                                      ij  ij            ij
                                              2
                                                   1
                                           S = σ  − σ δ
                                            ij  ij    kk ij
                                                   3
                 Where Y = constant:
                                                        f ∂     ∂ ∂f
                            f (σ +  dσ  ,α +  dα  ) =  f (σ  ,α +  dσ +  dα  = 0  (6-74)
                                                    )
                               ij  ij  ij  ij    ij  ij  ∂ σ  ij  ∂α  ij
                                                         ij      ij
                 If the linear kinematic hardening law is followed, one has:
                                                       S − )
                                                        ij (
                                           2              α
                                      dα =   cdε =  cdε p  ij                    (6-75)
                                               p
                                         ij  3  ij       Y
                 And therefore:
                                                  ij (
                                              13  S − α ij) dσ ij
                                         dε =                                    (6-76)
                                           p
                                              c 2    Y
                 Following the similar philosophy, one can obtain the solution for combined isotro-
              pic hardening and kinematic hardening.
              6.2.4  General Laws on Plastic Deformations
              There are several general principles regarding plastic deformations. These include: the
              loading, unloading conditions; normality and regularity; and stability conditions.

              6.2.4.1 Unloading Condition
              For 1-D situations, unloading is easy to judge. For multi-dimensions, it is much more
              difficult.
                 For isotropic hardening and the unloading condition:
                                              Sdσ < 0                            (6-77)
                                               ij  ij
                 For kinematic hardening, it is:
                                             ij (
                                            S − ) dσ  < 0
                                               α
                                                 ij  ij                          (6-78)
                 The physical meaning is that the incremental stress will point to the inside of the
              yielding surface.

              6.2.4.2 The Kuhn-Tucker Conditions
                                    p
              It can be observed that  dε  and ƒ obey the Kuhn-Tucker conditions:
                                         dε p  f = 0, dε ≥ 0,  f ≤ 0             (6-79)
                                                  p
   181   182   183   184   185   186   187   188   189   190   191