Page 34 - Mechanics of Asphalt Microstructure and Micromechanics
P. 34

Introduction and Fundamentals for Mathematics and Continuum Mechanics   27


              The rate of work by body force:  ∫ V  ρbvdV                       (1-131)
                                             ii

              The power of mechanical force is: P(t) =   V ∫  ρb v dV +  ∂ V ∫  t v dS  (1-132)
                                                   ii
                                                            ii
                 The rate of thermal energy includes heat supply r (heat supply per unit mass per
              unit time) and heat flux q (heat flux per unit surface area per unit time). It can be repre-
              sented as:
                                       Qt ()  ∫  ρ rdV −  ∫  q n dS             (1-133)
                                              V       ∂ V  ii
                 The rate of internal energy U accounts for all the other energies stored in the medi-
              um. It is abstract at this stage. The specific internal energy u can be introduced so that:
                                                            .
                                                    .
                                    Ut ()  ∫  ρ udV  Ut () =  ∫  ρ udV        (1-134a, b)
                                          V               V
                 Using the above terms, the energy conservation law can be represented as:
                                         .    .
                                        Ut () + K t () =  P t () +  Q t ()      (1-135)

                                     .    d   1             .
                                    Kt() =  V ∫  ρ v v dV =  V ∫  ρ v v dV
                                         dt   2  ii        i  i
                 By using the divergence theorem and the stress-surface traction relationship, one
              can convert the surface integral  ∫  t i v i dS into a volume integral:
                                          V
                                                ∂ σ (  v )  ∂σ       v ∂
                          ∫ ∂  t v dS =  ∫ ∂  σ ij n v dS = ∫  x ∂  ij i  dv =  ∫ V ∂  ij j v +σ ij  x ∂  i  ) dV
                                                           (
                                                                i
                             ii
                                        j i
                                    V
                           V
                                              V
                                                   j         x j      j
                                      V ∫  qn dS =  V ∫  q ∂  i dV =  V ∫  div q dV
                                                           ()
                                     ∂  ii      x ∂
                                                 i
                     .
                               .
                  ∫  ρudV + ∫  ρv vdV   ∫  ρb vdV +  V ∫  ( ∂ σ ij v + σ i ij  v ∂ x ∂  i  ) dV + ∫  ρ rdV − ∫  div q dV
                                                                             ( )
                                                  x ∂
                              i
                                         ii
                                i
                                                     i
                           V
                   V
                                      V
                                                   j        j     V       V
                        .         .      ∂ σ            v ∂
                    ∫  ρudV   ∫  (− ρv +  ρb +  x ∂  ij  ) vdV +  V ∫  σ ij  i  dV +  ∫  ρ rdV − ∫  div q dV
                                                                           ()
                                   i
                                              i
                                                                            i
                                       i
                                                        x
                             V
                     V
                                           j            ∂x  j  V       V
                                               ⎛   .     ∂σ  ⎞
                                               ⎜
                 By using the momentum equation,  −ρv i + ρb i  +  ij  ⎟  0, and
                                               ⎝          ∂x  j  ⎠
                               ∫  σ ij  x ∂ v ∂  i  dV =  V ∫  σ ( D + W dV =  V ∫  σ ij D dV
                                                       )
                                               ij
                                                                  ij
                                                  ij
                                                      ij
                                V
                                      j
                 The energy equation will reduce to:
                                         .
                                                   +
                                       ρu− σ D −  ρr div q) = 0                 (1-136)
                                                       (
                                             :
   29   30   31   32   33   34   35   36   37   38   39