Page 481 - Mechanics of Asphalt Microstructure and Micromechanics
P. 481

Index   473


      mastic strains, , 50, 109f, 112f  modeling                parameter sensitivity, 333–334f,
      mastic/solid area ratio, 109f   applications, 92–94         354f
      MATCH program, 104–106        hierarchial, 427f           parameter deformation variation,
      material                       macro thermodynamics, 374    335f
       characterization, 352–357     multi-scale, 423–443, 430f  particle
       other, 361f                 models                        configurations, 309f
       parameters, 334f, 342–343f    3-D constitutive, 225–227   contacts, 76–78
       properties, 398f             Benedito, 217–220            deformations, 121f
       unique, 1–2                   cohesive zone, 235–237      identification, 302–306
      material-time derivative, 16   contact, 288–293             irregular shape, 314f
      matrix operations, 10–11      damage-based, 231–232        orientation, 82
      maximum stresses, 22–23        dissipated energy-based, 233–   reconstruction, 301f
      Maxwell model, 185–186         235                          rotational movement, 311f
      mean solid path, 88           elastoviscoplastic constitutive,     shape effect, 385f
      mean vector, 80f               224–225                      translational movements, 305f
      measurement, micro strain, 120f   empirical phenomenological,   pavement analysis, top–down
      mechanical properties, 44–49   227–229                      cracking, 157–159
      mesh displacement profile, 337f   fatigue, 227–235        permanent deformation, 356f, 420f
      method                         fracture mechanics, 230–231  permeability,418– 419f
       2D, 100–112                  HiSS, 223–224               Perzyna models, 194–195
       3D, 113–121                  micromechanics, 372–376     phase separation, 348–352
        boundary element, 243–279   micromechanics-based, 232–233  phenomenological behavior of
       conditions, 145f             SHRP viscoplasticity          asphalt, 3
        digital image correlation,                              phenomenological models,
         121–126                     deformation, 265–273         165–211
        discrete element, 285–322    surface energy–related, 233  physical properties of material,
        finite element, 243–279     viscoplastic, 221–223         307f
       quantification, 90–94       modulus testing, 335f        Piola-Kirchhoff stresses, 23–24
       relationships, 146–147      moisture damage, 2, 443–445  plastic deformations, 179–180
        rigid element, 360         moisture damage mechanisms,   plastic flow directions, 177–178
        stereology, 86–87, 90        445f                       plasticity, 174–179
       two-scale homogenization,   moisture incorporation, 359–360  premutation tensor, 7
         455–456                   molecular dynamics simulation   principal stresses, 22
      micro strain measurement, 120f  procedures, 432f          products
      micromechanical finite element   molecular dynamics, 431–435   dyad–dyad, 8
         method, 359f              Mori-Tanka method, 144        inner, 7–8
      micromechanics, 138-139      morphological properties, 49–50   tensor–tensor, 8
       application, 150–154        multiple layered system, 398–399,    vector–tensor, 8
       model, 232–233                400f                       properties
      microscope                   multiscale characterization,    aggregates, 44–50
        atomic force, 55–56          423–443                     binder, 33–44
        scanning tunneling, 56–57  multiscale modeling methods, 429f   mechanical, 44–49
      microstructural implications, 67–84  multiscale modeling, 423–443, 430f,    mixture, 50–54, 140–149
      microstructural quantities, 67–84,                         morphological, 49–50
         85–90                           N
      mixture                                                        Q
       application, 129–130        nanoindenter, 57             quantification method, 90–94
        filed variable, 137        nanoscale characterization, 55–57
        framework of mixture, 130–133  numbering configuration, 105f
        numerical testing, 336f                                      R
        properties, 50–54, 140–149       O                      reaction force field theory, 428
        strain theorem, 140–141    octohedral stress, 23        recovery, 181
        stress theorem, 140–141    orthotropic elasticity, 393–394  relaxation, 181
        two–constituent case, 133–135  orthotropic materials, 394–395  relaxation modulus, 192–193
      model building, 348–352                                   resilient modulus test, 51
      model rationality analysis,                               rigid element, 262
         357–359f                        P                      rigid element method, 360
      model, Druker-Plager, 273–274  parallel bond model, 289f  rotation tensor, 19
   476   477   478   479   480   481   482