Page 478 - Mechanics of Asphalt Microstructure and Micromechanics
P. 478

APPENDIX3





                    Isotropic Elastostatics Fundamental Solution





              This appendix is abstracted from Gaul et al (2003). It documents the fundamental solu-
              tion to the following equation as the basis solution for BEM applications.
                   1   *    *     1    ξ δ
                   −
                 12ν  u ik kj  + u ij kk  = − δ x(, )  ij
                                  μ
                        ,
                             ,
                 Where n is Poisson’s ratio and m is the shear modulus. By introducing the tensorial
              potential G ij , one obtains:
                 u =  G  −   1   G
                  *
                  ij  ij mm  ( −ν  im jm
                       ,
                                    ,
                           21   )
                 For the 3D case, the tensorial potential function is:
                 Gr() =  1  rδ
                  ij   8πμ  ij
                 Where r is the position vector. Some of the useful derivatives include:

                 G   =  1  δ  r
                  ij m  8πμ  ij m
                            ,
                   ,
                 G   =   1  δδ  − rr )
                             (
                                    ,
                  ij mn  8πμ r  ij  mn  ,  m n
                   ,
                 The fundamental solution is:
                         1
                                34νδ
                 u =           (( −  )  +  rr )
                  *
                  ij  16πμ ( −  r ) ν  ij  i ,,  j
                          1
                 The traction field is:
                         1    ⎛               r ∂              ⎞
                 t =           (( −  )  + 3 rr )  + 12νν)(rn −  r n j ⎟
                                                 ( −
                                12νδ
                  *
                                                               )
                  ij  π ( −  r ) ν  2 ⎜ ⎝  ij  i ,, j  n ∂  , ji  ,i  ⎠
                     81
                 The solution represented in X, Y and Z coordinates is presented in Becker (1992).
        References
              Becker, A.A. (1992). The Boundary Element Method in Engineering. McGraw-Hill Book Company.
              Gaul, L., Kogl, M. and Wagner, M. (2003). Boundary Element Methods for Engineers and Scientists-
                 An Introductory Course with Advanced Topics, Springer.

    470
   473   474   475   476   477   478   479   480   481   482