Page 475 - Mechanics of Asphalt Microstructure and Micromechanics
P. 475

APPENDIX2





                                                           Laplace Transform






              TABLE A2.1  Typical operations and relations.
                                                            ∞
                                                                −
                                                                 st
                                                  {(
                                                             ( )
              Laplace transform                  Lf t)} ≡ F s ( ) ≡ ∫  f t e dt
                                                            0
                                                 t
                                                 ∫ ft ( − ξ g ) ( )ξ dξ
              Convolution
                                                 0
                                                   t
                                                                 { ( )} {
              Convolution for Laplace            L{ ∫  f t ( − ξ g ) ( )ξ d } =ξ  L f t L g t ( )}
                                                  0
                                                  df t ()
                                                                 0
                                                          {
              Derivative theorem for Laplace     L{   } =  sL f t)} −  f( )
                                                            (
                                                   dt
                                                  {
              Linearity (superposition)          La f t () +  a f t ()} =  a F s ( ) +  a F s ( )
                                                                        2 2
                                                          22
                                                                 1 1
                                                   11
                                                  ⎧ df t ()⎫
                                                               f( )
              Derivative property                L ⎨  ⎬ =  sF s() − 0
                                                  ⎩  dt ⎭
                                                  ⎧ ⎪  t  ⎫ ⎪  Fs()
                                                       d
              Integral property                  L ⎨ ∫  f()ττ ⎬ =
                                                   s ⎩ ⎪  ⎭ ⎪  s
                                                            (
              Multiplication by time             Ltf t)} =−  d  Fs)
                                                  {(
                                                         ds
                                                  ⎧ ft ()⎫  ∞
                                                           ()
              Division by time                   L ⎨  ⎬ =  ∫ Fu du
                                                  ⎩  t ⎭  s
                                                   −
                                                    at
              Multiplication by an exponential   Le f t ( )} =  F s ( +  a)
                                                  {
                                                                 −
                                                                 Ts
                                                  {(
                                                       )
              Time shift                         Lf t − T H t ( −  T)} =  e F s ( )
                                                           s
                                                 {(
              Scale change                      Lf at)} =  1 F( )
                                                        a  a
                                                 ⎧ ⎪
                                                L ⎨∫ t  f() (τ  g t τ τ−  ⎫ ⎪ ⎬ =  F s () •
              Convolution theorem                           d )      G s ()
                                                 ⎩ ⎪ 0        ⎭ ⎪
                                                                                   467
   470   471   472   473   474   475   476   477   478   479   480