Page 480 - Mechanics of Asphalt Microstructure and Micromechanics
P. 480

472   Index


       DEM                          empirical phenomenological        H
         applications, 312–314, 313f  models, 227–229           hierarchial modeling, 427f
        interpretation, 159–160     energy dissipation, 190     Hirsch model, 149, 151f
        models, 376f, 385f          energy conservation, 26–27  HiSS model, 223–224
        predictions, 299–312        energy functions, 435f      horizontal direction, 347–348f
        simulations, 374–375        environment exposure, 2     hydraulic power unit, 403f
       deviatoric stresses, 23      equivalent ellipsoids, 318f  hydraulic stresses, 23
       DIC                          equivalent ellipsoid approach,   hyperelastic models, 168–174
         2-D surface analysis, 122–123  314–319
         3-D surface analysis, 123  Eshelby dilute solution, 144
         3-D volume analysis, 123–124  Eshelby mechanics, 138–139     I
         asphalt modeling, 124–126                              image analysis, 90, 104
         asphalt testing, 124–126        F                      image interpolation, 65f, 90
         fundamentals of, 124       fabric                      indirect tensile test, 53, 336f
       differential schemes, 145–146   distributions, 84f       infinite element, 262
       digital image correlation, 121–126   quantities, 84–85   inhomogeneity composite, 143f
       digital mix design, 361–364, 363f   tensor, 86–87        inner product, 7–8
       digital specimen and test, 345f  failure modes, 2        intelligent compaction, 388–389
       digital specimen concept, 328f  fatigue modeling, 227–235  interface
       digital test, 343–359        fatigue studies, 237–238     element, 252–262
       digital test concept, 328f   FEM analysis, 395–398        model, 439f
                                                                  moisture sensitivity, 453–455
       digital test technique, 339f  field compaction, 376–386  interfacing cracks, 94f
       discrete element method, 285–322  finite element method, 243–279
       discrete fundamentals, 285–295  finite element model, 341–342f,  interpolation cases, 68f
                                                                interpolation effect, 66f
       dissipated energy-based model,   380f                    invariants, stress, 22
          233–235                   finite strain tensor, 13–14  isotropic compression, 408f
       distribution of contact, 81f  flexural fatigue test, 52
       disturbed state models, 216–217  force components, 288f
       divergence theorem, 12       forces and displacements, 287f    K
       divided regions, 81f         forces applied to particle, 287f  Kelvin model, 186
       doublet mechanics, 154–156   fourth order isotropic tensor,10  Kinematics-deformation gradient,
       doublet mechanics interpretation,   fracture mechanics, 201–210  13–14
          159                       fracture mechanics models,   Kronecker delta, 6–7
       Druker-Plager model, 273–274   230–231
       dyad-dyad product, 8         frame transformation, 8           L
       dyadic product, 7            fundamental continuum       lab compaction, 367–376, 387
       dynamic complex modulus test, 51  mechanics equations, 24–26  linear elasticity, 166–168
       dynamic creep test, 52       fundamentals of continuum   load magnitude, 300f
       dynamic modules test, 330f, 332f  mechanics, 12–29       load sequence testing, 405f
                                    fundamentals of mathematics,   loading cycles, 357f
             E                        4–12                      local
       effective gradient, 72f      future development, 456       macro strains, 304f
       eigenstrains, 139                                         strains, 308f
       elastic interrelationship, 167f   G                        volume fraction, 71f, , 67–72
       elastic process, 180f, 183f  geometric terms, 395f       long axis orientation, 82f
       elastic stiffness, 438f      global macro properties, 310f  lower bounds, 148–149
       elasticity problems, 243–252  global strains, 109f
       elasticity, 166–174          GLWT specimen configuration       M
       Elastic-viscoplastic model, 195–197  rutting, 100–103f   macro thermodynamics modeling,
       elastoviscoplastic constitutive   gradation effect representation,   374
          model, 224–225              387–388                   macroscopic properties, 306f
       electromagnetic mechanical   gradients deformation, 15   macro-strain contours, 108f
          coupling, 440–443         green function, 29          macro-strain, 106–112
       elliptic voids, 202f         Griffith energy criteria, 204–205  Marshall stability test, 50
       empirical measurements       gyratory compaction, 368f   mass center coordinates, 303f
          compactibility, 386–387   gyratory testing machine, 53–54  mass momentums, 316f
   475   476   477   478   479   480   481   482