Page 468 - Modelling in Transport Phenomena A Conceptual Approach
P. 468

448     CHAPTER IO.  UNSTEADY MICROSCOPIC BAL. WTHOUT GEN.

            Table 10.3  The roots of Eq. (10.2-79).

              BiH    A1     A2     A3     x,      A5
                0  0.000   3.142  6.283   9.425  12.566
              0.1  0.311  3.173  6.299   9.435  12.574
              0.5  0.653  3.292  6.362   9.477  12.606
               1.0  0.860  3.426  6.437   9.529  12.645
               2.0  1.077  3.644  6.578   9.630  12.722
             10.0  1.429  4.306  7.228  10.200  13.214


            The unknown coefficients C, can be determined by using the initial condition given
            by Eq. (10.2-70).  The result is








                                        -      2 sin A,                     (10.281)
                                        -
                                           A,  + sin  A,,   cos A,
            Therefore, the solution becomes
                            I  e=2C   A,  + sin A,  cos A,   e-  X:T    cos(^,<>   (10.2-82)
                                   m
                                           sin A,
                                  n=l

            When r 1 0.2, the series solution given by Eq. (10.2-82) can be approximated by
            the first term of  the series.
               The rate of  energy entering into the slab, Q, is given by
                                            ( :IZ=,>
                                 Q=2WH  k-
                                               L  %I,=,
                                    -   2 WHk (T,  - To) 80                 (10.283)
                                    --

            Substitution of Eq. (10.2-82) into Eq. (10.2-83) gives

                       4 WHk (T, - To)        An sin2 A,
                   Q=         L            An + sin A,  cos   exp (-  A2,T)   (10.2-84)
                                       n=l
            The mount of  heat transferred can be calculated from

                                                                            (10.285)
   463   464   465   466   467   468   469   470   471   472   473