Page 472 - Modelling in Transport Phenomena A Conceptual Approach
P. 472

452     CHAPTER 10.  UNSTEADY MICROSCOPIC BAL. WITHOUT GEN.




                                                                           (10.2-107)

            The boundary condition defined by Eq.  (10.2-102) indicates that B = 0.  Applica,
            tion of  Eq.  (10.2-103) yields

                        A e- x2T(sin A - A cos A)  = BiH  A e-   sin X     ( 10.2- 108)

            Solving for X gives
                                       An cot A,  = 1 - BiH                (10.2-109)
            The first five roots of Eq.  (10.2109) are given as a function of  BiH  in Table 10.4.


            'pable 10.4  The roots of  Eq. (10.2-109).



                0  0.000   4.493  7.725  10.904  14.066
               0.1  0.542  4.516  7.738  10.913  14.073
               0.5  1.166  4.604  7.790  10.950  14.102
               1.0  1.571  4.712  7.854  10.996  14.137
               2.0  2.029  4.913  7.979  11.086  14.207
              10.0  2.836  5.717  8.659  11.653  14.687


            The complete solution is


                                                                           (10.2-110)
                                        n=l
            The unknown coefficients Cn  can be determined from Eq. (10.2-101).  The result
            is







                                            sin A,  - A,  cos An
                                            An - sin An COS An             (10.2-111)

            Therefore, the solution becomes
   467   468   469   470   471   472   473   474   475   476   477