Page 471 - Modelling in Transport Phenomena A Conceptual Approach
P. 471

10.2.  ENERGY TRANSPORT                                             45 1


           The initial and the boundary conditions associated with Eq.  (10.2-92) are
                                  at  t=O     T=To                         (10.2-93)
                                              a-
                                                 -0
                                  at  r=O     --                           (10.2-94)
                                              dr
                                                dT
                                  at  r=R     k-=((h)(T,-T)                (10.2-95)
                                                dT
              Introduction of  the dimensionless quantities
                                             Tw -T
                                         8=                                (10.2-96)
                                             Tw - To
                                                at
                                            r=-                            ( 10.2-97)
                                                R2
                                                                           (10.2-98)


                                                                           (10.2-99)
           reduces Eqs.  (10.2-92)-(10.2-95) to


                                                                          (10.2-100)



                                     at  r=O     0=1                      (10.2-101)
                                                                          (10.2-102)


                                                                          (10.2-103)

            10.2.2.1  Solution for 0.1 <BiH < 40

           Note that the transformation
                                                U                         (10.2-104)
                                            O=T
           converts the spherical geometry into the rectangular geometry. Substitution of  Eq.
            (10.2-104) into Eq.  (10.2-100) leads to

                                           au  -  a2u                     (10.2-105)
                                           _- -
                                           67   at2

           which is identical with Eq.  (10.2-69). Therefore, the solution is
                                 u = e-  "7  [A sin(Xc) + B cos(~t)l      ( 10.2- 106)
   466   467   468   469   470   471   472   473   474   475   476