Page 565 - Modelling in Transport Phenomena A Conceptual Approach
P. 565

B.2.  SECONDORDER LINEAR DFFERXNTU EQUATIONS                        545

           Table B.l  Properties of the Bessel functions.

                                                         ~
                           BEHAVIOR NEAR THE ORIGIN
                                     JJO) = IO(O) = 1
                             - Yn(0) = Kn(0) = 00   for all n
                              Jn(0) = In(0) = 0   for n > 0
                 Note that if the origin is a point in the calculation field, then
                 Jn(z) and In(z) are the only physically permissible solutions.
                   BESSEL FUNCTIONS OF NEGATIVE ORDER

                   J-,(AZ)   = (-  l)nJ,(Az)   Y-,(AX)  = (-  l)nYn(Az)
                         Ln(Xx)  = In(Az)     K-,(XX)  = &(AX)


























                            DIFFERENTIAL RELATIONS
                 d                     n                        n
                -Jn(XX)   = XJn-l(AX)  - - &(AX)  = - XJ,+1(Xz)  + - Jn(Az)
                dx                     X                        2
                 d                     n                        n
                -Y,(XZ) = AYn-l(Az)  - - Yn(Xz)  = -AY*+I(Xz)  + - Yn(Xs)
                dx                      X                       X
                  d                      n                     n
                  --In(A2)   = AI,-,(As)   - - In(AX)  = XIn+l(Az)  + - In(Az)
                  dx                     2                     2
              d                         n                         n
              -Kn(Az)   = - AKn-l(AX)  - - &(AX)   = - AKn+l(Ax)  + - &(AX)
              dx                        X                         X
   560   561   562   563   564   565   566   567   568   569   570