Page 568 - Modelling in Transport Phenomena A Conceptual Approach
P. 568

548          APPENDIX B.  SOLUTIONS OF DLEFERENTIAL EQUATIONS

            Table 1  Comparison of  numerical and exact values for h = 0.1.

             t  (h)    kl        IE2       k3       k4     Y (num.)  Y  (exact)
              0.1   - 0.3000  - 0.2700  - 0.2730  - 0.2454   1.2281   1.2281
              0.2   - 0.2456  - 0.2211  - 0.2235  - 0.2009   1.0055    1.0055
              0.3   - 0.2011  - 0.1810  - 0.1830  - 0.1645   0.8232   0.8232
              0.4   - 0.1646  - 0.1482  - 0.1498  - 0.1347   0.6740   0.6740
              0.5   - 0.1348  - 0.1213  - 0.1227  - 0.1103   0.5518   0.5518
              0.6   - 0.1104  - 0.0993  - 0.1004  - 0.0903   0.4518   0.4518
              0.7   - 0.0904  - 0.0813  - 0.0822  - 0.0739   0.3699   0.3699
              0.8   - 0.0740  - 0.0666  - 0.0673  - 0.0605   0.3028   0.3028
              0.9   - 0.0606  - 0.0545  - 0.0551  - 0.0495   0.2479   0.2479
               1.0  - 0.0496  - 0.0446  - 0.0451  - 0.0406   0.2030   0.2030


            Table 2  Comparison of  numerical and exact values for h = 0.5.

             t (h)     kl        k2        k3       IC4    y (num.)  y (exact)
              0.5   - 1.5000  -0.7500   - 1.1250  -0.3750   0.5625     0.5518
               1.0   - 0.5625  -0.2813   -0.4219   -0.1406   0.2109    0.2030


            B.2.5  Solution of Simultaneous Differential Equations
            The solution procedure presented for a single ordinary differential equation can be
            easily extended to solve sets of  simultaneous differential equations.  For example,
            for the case of  two simultaneous ordinary differential equations


                                                                            (B.2-37)

                                          da
                                          - = g(t, Y, 4                     (B.2-38)
                                          dt
            the fourth-order Runge-Kutta solution algorithm is given by


                                                                            (B.239)

            and
                                            1          1
                                                       3
                                Zn+l  = 4a + $1  + t4) + - (e2 + e3)        (B .2-40)
            The terms ki + k4 and el + t4 are defined by
                                                                            (B.2-41)
                                                                            (B.2-42)
   563   564   565   566   567   568   569   570   571   572   573