Page 572 - Modelling in Transport Phenomena A Conceptual Approach
P. 572

552         APPENDIX 33.  SOLUTIONS OF DFFEmNT1A.L EQUATIONS


            Substitution of kl --t k4 and C1 --t 4 into Eqs.  (B.2-39) and (B.S4O), respectively,
            gives the values of  y1  and  z1  as
                              1                  1
                      91 = 1 - - (0.0200 + 0.0196) - -(0.0198 + 0.0198) = 0.9802   (26)
                              6                  3
                            1                    1
                    z1 = 0 + - (0 + 6.8086 x   + -(3.5  x    + 3.4032  x
                            6                    3
                      = 3.4358 x                                                (27)
            Repeated application of this procedure gives the values of  y  and  z  at every 0.05 h.
            The results are given in Tables 1 and  2.

            Thble  1  Values of  y as a function of time.
             t (h)     kl        IC2      k3        k4       Y
              0.05   - 0.0200  - 0.0198  - 0.0198  - 0.0196  0.9802
              0.10   - 0.0196  - 0.0194  - 0.0194  - 0.0192  0.9608
              0.15  - 0.0192  - 0.0190  - 0.0190  - 0.0188  0.9418
              0.20   - 0.0188  - 0.0186  - 0.0186  - 0.0185  0.9232
              0.25   - 0.0185  - 0.0183  - 0.0183  - 0.0181  0.9049
              0.30   - 0.0181  - 0.0179  - 0.0179  - 0.0177  0.8870

            nble 2  Values of  z as a function of  time.


              0.05   0.0000  0.0004  0.0003  0.0007   0.0003
              0.10  0.0007  0.0010  0.0010  0.0013  0.0013
              0.15  0.0013  0.0016  0.0016  0.0019  0.0029
              0.20   0.0019  0.0022  0.0022  0.0025  0.0051
              0.25  0.0025  0.0028  0.0028  0.0030  0.0079
              0.30   0.0030  0.0033  0.0033  0.0035  0.0112


            B.3  SECOND-ORDER PARTIAL
                    DIFFEFtENTIAL EQUATIONS

            B.3.1  Classification of Partial Differential Equations

            As a function of  two independent variables, x and y, the most general form of  a
            second-order linear partial differential equation has the form




                                                      azl
                                             + E(z, 9) - + F(x,Y) u = G(z, 9)  (B.3-1)
                                                      aY
   567   568   569   570   571   572   573   574   575   576   577