Page 213 - Modern Control of DC-Based Power Systems
P. 213

Control Approaches for Parallel Source Converter Systems     177


                                     T
                                                ðÞUx 2
                                _ x 1 5 θ f x 1 1 h 1 x 1
                                     f 1 1 ðÞ
                                  T
                             _ x 2 5 θ f x 1 ; x 2 Þ 1 h 2 x 1 ; x 2 ÞUx 3
                                  f 2 2 ð       ð                       (5.172)
                                          ^
                            T
                       _ x k 5 θ f x 1 ; x 2 ; .. . ; x 3 Þ 1 h k x 1 ; x 2 ; .. . ; x k ÞUu
                            f k k
                               ð
                                                ð
                 This time the known functions f return vectors. Also, the unknown
                                              k
              parameter θ is considered to be a vector. The output is defined as y 5 x 1
              which should track a reference signal y ref ðtÞ. This tracking control prob-
              lem can be transformed to a regulation problem by introducing the track-
              ing error variable. The error signal is defined as z i 5 x i 2 α i21 (e.g.,
              z 1 5 x 1 2 y ref ). Afterwards the first system equation is rewritten:
                                T



                 _ z 1 5 _x 1 2 _y 5 θ f  1 	 z 1 1 y ref      1 h 1 z 1 1 y ref     ð z 2 1 α 1 Þ 2 _y ref
                           ref
                                f 1
                                                                        (5.173)

                 For simplicity f  z 1 1 y ref will be referred to simply as f , and simi-
                              1                                     1
              larly for h 1 ;f ;h 2 .
                        2
                 At this stage the Backstepping algorithm is expanded, by introducing
                         ^                                  ~         ^
                     _
              an estimate θ f 1  of θ f 1  with the estimation error θ f 1  5 θ f 1  2 θ f 1 , (with
              ~ _    ^
              θ f 1  52 θ f 1 ). By applying now the typical Lyapunov function candidate,
              that not only penalizes the tracking errors but also the estimation errors:
                                            1      1 T     T
                                                        21 ~
                                      ^   5 z 1 θ Γ θ
                                                    ~
                                               2
                               V 1 z 1 ; θ f 1  1    f 1  f 1  f 1      (5.174)
                                            2      2
                                               T
                 The newly introduced term Γ 5 Γ . 0 is the adaptation gain matrix,
                                                     ^
              and determines how fast the parameters of θ are adapted. This leads to
              the following Lyapunov derivative:
                               21 _
                             T
                            ~
                _ V 1 5 z 1 _z 1 1 θ Γ θ ~
                                                  ~
                                                   T  21 _              (5.175)

                         T
                   5 z 1 θ f 1 h 1 ðz 2 1 α 1 Þ 2 _y  2 θ Γ  ^  2 Γ f 1 1 1
                                                                 f z
                         f 1 1              ref    f 1   θ f 1
                 To cancel the indefinite terms, virtual control α 1 , and the intermedi-
                               are defined as:
              ate update laws τ f 11
                                   1           ^ T
                             α 1 5    2 c 1 z 1 2 θ f 1 _y  ;c . 0      (5.176)
                                                f 1 1  ref
                                   h 1
                                           _ ^
                                                  f z
                                     τ f 11  5 θ f 1  5 Γ f 1 1 1       (5.177)
   208   209   210   211   212   213   214   215   216   217   218