Page 131 - Modern Optical Engineering The Design of Optical Systems
P. 131

114   Chapter Six

          After tracing the axial and “principal” rays through the system, the
        following are computed for each element
                                    u         u′
                               v        or v′                       (6.3d)
                                    y          y
                                          y p
                                     Q                              (6.3e)
                                          y

        where u and y are taken from the data of the axial ray and y p is from
        the principal ray data.
          Then the aberration contributions may be determined using the stop
        shift equations:
             TSC*   TSC                                             (6.3f)

              CC*   CC   Q   TSC                                    (6.3g)
                                        2
             TAC*   TAC   2Q   CC   Q TSC                           (6.3h)
             TPC*   TPC                                             (6.3i)
                                                        3
                                               2
              DC*   DC   Q(TPC   3TAC)   3Q CC   Q TSC              (6.3j)
           TAchC*   TAchC                                           (6.3k)
            TchC*   TchC   Q   TAchC                                (6.3l)

          The starred terms are the contributions from an element which is
        not at the stop—that is, one for which y p ≠ 0. The unstarred terms are
        the contributions from the element when it is in contact with the stop
        (and y p   0) and are given by the following equations:

                y 4
                             2
                                      2
                                               2
                                                                2
                       3
        TSC        (G 1 c   G 2 c c 1    G 3 c v   G 4 cc 1   G 5 cc 1 v   G 6 cv )
                u′ k
                y 4
                                     2
                       3
                                                               2
                             2
                                              2
                   (G 1 c   G 2 c c 2   G 3 c v′   G 4 cc 2   G 5 cc 2 v′   G 6 cv′ )  (6.3m)
                u′ k
                                          2
                   2
         CC   hy (0.25G 5 cc 1   G 7 cv   G 8 c )
                   2
                                            2
               hy (0.25G 5 cc 2   G 7 cv′   G 8 c )                 (6.3n)
                                   2
                                  h  u′ k
                          TAC                                       (6.3o)
                                    2
   126   127   128   129   130   131   132   133   134   135   136