Page 139 - Multifunctional Photocatalytic Materials for Energy
P. 139
Carbon nitride photocatalysts 125
[61] Z.F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang, J.J. Zou, et al., Carbon nitride with
simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen
evolution, Nano Energy 12 (2015) 646–656.
[62] J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping
for enhanced photocatalytic hydrogen evolution from water under visible light, J. Mater.
Chem. 22 (30) (2012) 15006.
[63] G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride
semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater. 26 (5)
(2014) 805–809.
[64] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, et al., N-doped graphitic
carbon-incorporated g-C 3 N 4 for remarkably enhanced photocatalytic H 2 evolution under
visible light, Carbon 99 (2016) 111–117.
[65] Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent visible-light photo-
catalysis of fluorinated polymeric carbon nitride solids, Chem. Mater. 22 (18) (2010)
5119–5121.
[66] S. Cao, Q. Huang, B. Zhu, J. Yu, Trace-level phosphorus and sodium co-doping of g-C 3 N 4
for enhanced photocatalytic H 2 production, J. Power Sources 351 (2017) 151–159.
[67] C.A. Caputo, L. Wang, R. Beranek, E. Reisner, Carbon nitride-TiO 2 hybrid modified
with hydrogenase for visible light driven hydrogen production, Chem. Sci. 6 (10) (2015)
5690–5694.
[68] J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C 3 N 4 /TiO 2 with enhanced photocata-
lytic activity for H 2 evolution by a simple method, Int. J. Hydrog. Energy 39 (12) (2014)
6354–6363.
[69] Z. Yan, Z. Sun, X. Liu, H. Jia, P. Du, Cadmium sulfide/graphitic carbon nitride het-
erostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient
photocatalytic hydrogen production in water under visible light, Nanoscale 8 (8) (2016)
4748–4756.
[70] L. Ge, C. Han, Synthesis of MWNTs/g-C 3 N 4 composite photocatalysts with efficient vis-
ible light photocatalytic hydrogen evolution activity, Appl. Catal. B Environ. 117–118
(2012) 268–274.
[71] K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Phys. Chem.
Chem. Phys. 12 (40) (2010) 13020–13025.
[72] W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal-organic frameworks for
applications in electrocatalytic and photocatalytic water splitting, Adv. Sci. 4 (4) (2017)
1600371.
[73] R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, et al., Quasi-polymeric metal-organic
framework UiO-66/g-C 3 N 4 heterojunctions for enhanced photocatalytic hydrogen evolu-
tion under visible light irradiation, Adv. Mater. Interfaces 2 (10) (2015) 1500037.
[74] F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou, Y. Zheng, Facile approach to synthesize g-PAN/
g-C 3 N 4 composites with enhanced photocatalytic H 2 evolution activity, ACS Appl. Mater.
Interfaces 6 (10) (2014) 7171–7179.
[75] M.Z. Rahman, J. Zhang, Y. Tang, K. Davey, S.Z. Qiao, Graphene oxide coupled carbon
nitride homo-heterojunction photocatalyst for enhanced hydrogen production, Mater.
Chem. Front. 1 (3) (2017) 562–571.
[76] K. Chen, Z. Chai, C. Li, L. Shi, M. Liu, Q. Xie, et al., Catalyst-free growth of three-
dimensional graphene flakes and graphene/g-C 3 N 4 composite for hydrocarbon oxidation,
ACS Nano 10 (3) (2016) 3665–3673.