Page 139 - Multifunctional Photocatalytic Materials for Energy
P. 139

Carbon nitride photocatalysts                                     125

            [61]  Z.F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang, J.J. Zou, et al., Carbon nitride with
                simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen
                evolution, Nano Energy 12 (2015) 646–656.
            [62]  J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping
                for enhanced photocatalytic hydrogen evolution from water under visible light, J. Mater.
                Chem. 22 (30) (2012) 15006.
            [63]  G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride
                semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater. 26 (5)
                (2014) 805–809.
            [64]  Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, et al., N-doped graphitic
                carbon-incorporated g-C 3 N 4  for remarkably enhanced photocatalytic H 2  evolution under
                visible light, Carbon 99 (2016) 111–117.
            [65]  Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent visible-light photo-
                catalysis of fluorinated polymeric carbon nitride solids, Chem. Mater. 22 (18) (2010)
                5119–5121.
            [66]  S. Cao, Q. Huang, B. Zhu, J. Yu, Trace-level phosphorus and sodium co-doping of g-C 3 N 4
                for enhanced photocatalytic H 2  production, J. Power Sources 351 (2017) 151–159.
            [67]  C.A. Caputo, L. Wang, R. Beranek, E. Reisner, Carbon nitride-TiO 2  hybrid modified
                with hydrogenase for visible light driven hydrogen production, Chem. Sci. 6 (10) (2015)
                5690–5694.
            [68]  J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C 3 N 4 /TiO 2  with enhanced photocata-
                lytic activity for H 2  evolution by a simple method, Int. J. Hydrog. Energy 39 (12) (2014)
                6354–6363.
            [69]  Z.  Yan, Z.  Sun, X. Liu, H. Jia, P. Du, Cadmium sulfide/graphitic carbon nitride het-
                erostructure  nanowire  loading  with a  nickel hydroxide  cocatalyst  for highly  efficient
                photocatalytic hydrogen production in water under visible light, Nanoscale 8 (8) (2016)
                4748–4756.
            [70]  L. Ge, C. Han, Synthesis of MWNTs/g-C 3 N 4  composite photocatalysts with efficient vis-
                ible light photocatalytic hydrogen evolution activity, Appl. Catal. B Environ. 117–118
                (2012) 268–274.
            [71]  K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Phys. Chem.
                Chem. Phys. 12 (40) (2010) 13020–13025.
            [72]  W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal-organic frameworks for
                applications in electrocatalytic and photocatalytic water splitting, Adv. Sci. 4 (4) (2017)
                1600371.
            [73]  R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, et al., Quasi-polymeric metal-organic
                framework UiO-66/g-C 3 N 4  heterojunctions for enhanced photocatalytic hydrogen evolu-
                tion under visible light irradiation, Adv. Mater. Interfaces 2 (10) (2015) 1500037.
            [74]  F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou, Y. Zheng, Facile approach to synthesize g-PAN/
                g-C 3 N 4  composites with enhanced photocatalytic H 2  evolution activity, ACS Appl. Mater.
                Interfaces 6 (10) (2014) 7171–7179.
            [75]  M.Z. Rahman, J. Zhang, Y. Tang, K. Davey, S.Z. Qiao, Graphene oxide coupled carbon
                nitride  homo-heterojunction  photocatalyst  for  enhanced  hydrogen  production,  Mater.
                Chem. Front. 1 (3) (2017) 562–571.
            [76]  K. Chen, Z. Chai, C. Li, L. Shi, M. Liu, Q. Xie, et al., Catalyst-free growth of  three-
                dimensional graphene flakes and graphene/g-C 3 N 4  composite for hydrocarbon  oxidation,
                ACS Nano 10 (3) (2016) 3665–3673.
   134   135   136   137   138   139   140   141   142   143   144