Page 137 - Multifunctional Photocatalytic Materials for Energy
P. 137
Carbon nitride photocatalysts 123
[27] Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Holey graphitic carbon nitride
nanosheets with carbon vacancies for highly improved photocatalytic hydrogen produc-
tion, Adv. Funct. Mater. 25 (44) (2015) 6885–6892.
[28] Y. Zhong, Z. Wang, J. Feng, S. Yan, H. Zhang, Z. Li, et al., Improvement in photocata-
lytic H 2 evolution over g-C 3 N 4 prepared from protonated melamine, Appl. Surf. Sci. 295
(2014) 253–259.
[29] J. Zhang, X. An, N. Lin, W. Wu, L. Wang, Z. Li, et al., Engineering monomer structure
of carbon nitride for the effective and mild photooxidation reaction, Carbon 100 (2016)
450–455.
[30] J.S. Zhang, G.G. Zhang, X.F. Chen, S. Lin, L. Mohlmann, G. Dolega, et al., Angew.
Chem. Int. Ed. 51 (13) (2012) 3183–3187.
[31] S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, et al., Band structure engineering of
carbon nitride: in search of a polymer photocatalyst with high photooxidation property,
ACS Catal. 3 (5) (2013) 912–919.
[32] M. Shalom, M. Guttentag, C. Fettkenhauer, S. Inal, D. Neher, A. Llobet, et al., In situ
formation of heterojunctions in modified graphitic carbon nitride: synthesis and noble
metal free photocatalysis, Chem. Mater. 26 (19) (2014) 5812–5818.
[33] W. Tian, H. Zhang, H. Sun, A. Suvorova, M. Saunders, M. Tade, et al., Heteroatom
(N or N-S)-doping induced layered and honeycomb microstructures of porous car-
bons for CO 2 capture and energy applications, Adv. Funct. Mater. 26 (47) (2016)
8651–8661.
[34] X. Duan, K. O’Donnell, H. Sun, Y. Wang, S. Wang, Sulfur and nitrogen co-doped
graphene for metal-free catalytic oxidation reactions, Small 11 (25) (2015) 3036–3044.
[35] X. Duan, H. Sun, Y. Wang, J. Kang, S. Wang, N-doping-induced nonradical reaction on
single-walled carbon nanotubes for catalytic phenol oxidation, ACS Catal. 5 (2) (2015)
553–559.
[36] E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tade, S. Wang, Different crystallo-
graphic one-dimensional MnO 2 nanomaterials and their superior performance in catalytic
phenol degradation, Environ. Sci. Technol. 47 (11) (2013) 5882–5887.
[37] W. WT, L.Y. Zhan, W.Y. Fan, J.Z. Song, X.M. Li, Z.T. Li, et al., Cu-N dopants boost
electron transfer and photooxidation reactions of carbon dots, Angew. Chem. Int. Ed. 54
(22) (2015) 6540–6544.
[38] H. Sun, G. Zhou, Y. Wang, A. Suvorova, S. Wang, A new metal-free carbon hybrid for
enhanced photocatalysis, ACS Appl. Mater. Interfaces 6 (19) (2014) 16745–16754.
[39] X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, et al., Polymer semicon-
ductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon
nitride with visible light, J. Am. Chem. Soc. 131 (5) (2009) 1680.
[40] X.F. Chen, Y.S. Jun, K. Takanabe, K. Maeda, K. Domen, F. XZ, M. Antonietti, X.C. Wang,
Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host struc-
ture for photocatalytic hydrogen evolution with visible light, Chem. Mater. 21 (2009)
4093–4095.
[41] J. Liu, J. Huang, H. Zhou, M. Antonietti, Uniform graphitic carbon nitride nanorod for
efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis, ACS
Appl. Mater. Interfaces 6 (11) (2014) 8434–8440.
[42] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Bioinspired hollow semicon-
ductor nanospheres as photosynthetic nanoparticles, Nat. Commun. (2012) 1139.
[43] W. Wang, Y. JC, Z. Shen, D.K. Chan, T. Gu, g-C 3 N 4 quantum dots: direct synthesis,
upconversion properties and photocatalytic application, Chem. Commun. 50 (70) (2014)
10148–10150.