Page 140 - Multifunctional Photocatalytic Materials for Energy
P. 140

126                                Multifunctional Photocatalytic Materials for Energy

          [77]  X.  Li, Y.  Zheng, A.F.  Masters,  T.  Maschmeyer, A  nano-engineered  graphene/carbon
             nitride hybrid for  photocatalytic hydrogen  evolution, J. Energy Chem. 25  (2) (2016)
             225–227.
          [78]  J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, et al., Metal-free efficient photo-
             catalyst for stable visible water splitting via a two-electron pathway, Science 347 (6225)
             (2015) 970–974.
          [79]  J. Zhang, M. Zhang, R.Q. Sun, X. Wang, A facile band alignment of polymeric carbon ni-
             tride semiconductors to construct isotype heterojunctions, Angew. Chem. 51 (40) (2012)
             10145–10149.
          [80]  J. Xu, Y. Li, S. Peng, G. Lu, S. Li, Eosin Y-sensitized graphitic carbon nitride fabricated
             by heating urea for visible light photocatalytic hydrogen evolution: the effect of the py-
             rolysis temperature of urea, Phys. Chem. Chem. Phys. 15 (20) (2013) 7657–7665.
          [81]  S. Min, G. Lu, Enhanced electron transfer from the excited Eosin Y to mpg-C 3 N 4  for
             highly efficient hydrogen evolution under 550 nm irradiation, J. Phys. Chem. C 116 (37)
             (2012) 19644–19652.
          [82]  W. Wu, J. Zhang, W. Fan, Z. Li, L. Wang, X. Li, et al., Remedying defects in carbon
             nitride to improve both photooxidation and H 2  generation efficiencies, ACS Catal. 6 (5)
             (2016) 3365–3371.
          [83]  W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, Graphene oxide as a structure-directing agent
             for the two-dimensional interface engineering of sandwich-like graphene-g-C 3 N 4  hybrid
             nanostructures with enhanced visible-light photoreduction of CO 2  to methane, Chem.
             Commun. 51 (5) (2015) 858–861.
          [84]  T. Ohno, N. Murakami, T. Koyanagi, Y. Yang, Photocatalytic reduction of CO 2  over a hy-
             brid photocatalyst composed of WO3 and graphitic carbon nitride (g-C 3 N 4 ) under visible
             light, J. CO 2  Util. 6 (2014) 17–25.
          [85]  A.A.S. Nair, R. Sundara, N. Anitha, Hydrogen storage performance of palladium nanopar-
             ticles decorated graphitic carbon nitride, Int. J. Hydrog. Energy 40 (8) (2015) 3259–3267.
          [86]  C.M.  Subramaniyam, K.A.  Deshmukh, Z.  Tai, N.  Mahmood,  A.D.  Deshmukh,
             J.B.  Goodenough, et  al., 2D layered graphitic carbon nitride sandwiched with re-
             duced graphene oxide as nanoarchitectured anode for highly stable lithium-ion battery,
             Electrochim. Acta 237 (2017) 69–77.
          [87]  H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang, L. Zhang, Interwoven N and P dual-doped
             hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li
             and Na ion batteries, Carbon 122 (2017) 54–63.
   135   136   137   138   139   140   141   142   143   144   145