Page 136 - Multifunctional Photocatalytic Materials for Energy
P. 136
122 Multifunctional Photocatalytic Materials for Energy
[10] W. Chen, M. Chu, L. Gao, L. Mao, J. Yuan, W. Shangguan, Ni(OH) 2 loaded on TaON
for enhancing photocatalytic water splitting activity under visible light irradiation, Appl.
Surf. Sci. 324 (2015) 432–437.
[11] Y. Hou, F. Zuo, Q. Ma, C. Wang, L. Bartels, P. Feng, Ag 3 PO 4 oxygen evolution photocata-
lyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets, J. Phys.
Chem. C 116 (38) (2012) 20132–20139.
[12] Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous
organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry,
Angew. Chem. 51 (1) (2012) 68–89.
[13] X. Zhu, T. Zhang, Z. Sun, H. Chen, J. Guan, X. Chen, et al., Black phosphorus revisited:
a missing metal-free elemental photocatalyst for visible light hydrogen evolution, Adv.
Mater. 29 (17) (2017) 1605776.
[14] L. Liu, P. Hu, W. Cui, X. Li, Z. Zhang, Increased photocatalytic hydrogen evolution and
stability over nano-sheet g-C 3 N 4 hybridized CdS core@shell structure, Int. J. Hydrog.
Energy 42 (27) (2017) 17435–17445.
[15] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, et al., A metal-free
polymeric photocatalyst for hydrogen production from water under visible light, Nat.
Mater. 8 (1) (2009) 76–80.
[16] R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible–light-driven CO 2 reduction with
carbon nitride: enhancing the activity of ruthenium catalysts, Angew. Chem. 54 (8) (2015)
2406–2409.
[17] J.V. Liebig, About some nitrogen compounds, Ann. Pharmacother. 10 (1834) 10.
[18] G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride
semiconductors as visible light photocatalysts, J. Mater. Chem. 22 (16) (2012) 8083.
[19] F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Metal-free catalysis of sustain-
able Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid
the use of metal chlorides and halogenated compounds, Chem. Commun. (43) (2006)
4530–4532.
[20] Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty, A.C.H. Huan, et al., Defect en-
gineered g-C 3 N 4 for efficient visible light photocatalytic hydrogen production, Chem.
Mater. 27 (14) (2015) 4930–4933.
[21] Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao, C. Xue, Temperature-controlled morphology
evolution of graphitic carbon nitride nanostructures and their photocatalytic activities un-
der visible light, RSC Adv. 5 (61) (2015) 49317–49325.
[22] G. Wu, S.S. Thind, J. Wen, K. Yan, A. Chen, A novel nanoporous α-C 3 N 4 photocata-
lyst with superior high visible light activity, Appl. Catal. B Environ. 142–143 (2013)
590–597.
[23] Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct
polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production,
Nanoscale 4 (17) (2012) 5300–5303.
[24] D.J. Martin, K.P. Qiu, S.A. Shevlin, A.D. Handoko, X.W. Chen, Z.X. Guo, J.W. Tang,
Highly efficient photocatalytic H 2 evolution from water using visible light and structure-
controlled graphitic carbon nitride, Angew. Chem. 53 (2014) 9240–9245.
[25] H. Yan, Y. Chen, S. Xu, Synthesis of graphitic carbon nitride by directly heating sulfuric
acid treated melamine for enhanced photocatalytic H 2 production from water under visi-
ble light, Int. J. Hydrog. Energy 37 (1) (2012) 125–133.
[26] X. Li, G. Hartley, A.J. Ward, P.A. Young, A.F. Masters, T. Maschmeyer, Hydrogenated
defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evo-
lution, J. Phys. Chem. C 119 (27) (2015) 14938–14946.