Page 85 - Multifunctional Photocatalytic Materials for Energy
P. 85

74                                 Multifunctional Photocatalytic Materials for Energy

          [14]  A.G. Tamirat, J. Rick, A.A. Dubale, W. Su, B. Hwang, Using hematite for photoelectro-
             chemical water splitting: a review of current progress and challenges, Nanoscale Horiz. 1
             (2016) 243–267.
          [15]  W. Yin, H. Tang, S. Wei, M.M. Al-Jassim, J. Turner, Y. Yan, Band Structure engineering
             of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2 ,
             Phys. Rev. B 82 (2010), 045106.
          [16]  M.T. Uddin, Metal Oxide Heterostructures for Efficient Photocatalysts (Ph.D. thesis),
             Universte Science et  Technologies-Bordeaux I, Darmstadt, 2013.  https://tel.archives-
             ouvertes.fr/tel-00879226/.
          [17]  W.D. Callister Jr., Materials Science and Engineering: An Introduction, fifth ed., John
             Wiley &Sons, New York, 2011.
          [18]  E. Thimsen, Metal Oxide Semiconductors for Solar Energy Harvesting (All These and
             Dissertations (ETD)), Washington University, St. Louis, MO, 2009.
          [19]  “III. Absorption of Light and Generation” in “Semiconductor and Solar Interactions” in
             Section “The Science of Solar”, @ PHOTON LibreTexts TM , https://photon.libretexts.org
             (accessed 03.17.17).
          [20]  M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications,
             Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.
          [21]  C. Honsberg, B. Stuart, Absorption of Light, PVEducation.org, http://www.pveducation.
             org/pvcdrom/pn-junction/absorption-of-light, July 2017.
          [22]  B.  V. Zeghbroeck. Principles of Semiconductors Devices. University of Colorado
             Boulder, Boulder. http://ecee.colorado.edu/~bart/book/recomb.htm, https://ecee.colorado.
             edu/~bart/book/book/title.htm.
          [23]  R. Entner, Modeling and Simulation of Negative Bias Temperature Instability, Technischen
             Universitat Wien, Österreich, 2007. http://www.iue.tuwien.ac.at/phd/entner/node11.html.
          [24]  S.  Gimenez, J.  Bisquert, Photoelectrochemcial Solar Fuel Production: From Basic
             Principles to Advanced Devices, Springer Nature, AG Switzerland, 2016.
          [25]  H. Tuysuz, C.K. Chan, Solar Energy for Fuels, Springer, New York, 2016.
          [26]  J.M.  Coronado, F.  Fresno, M.D.  Hernandez-Alonso, R.  Portela, Design of Advanced
             Photocatalytic Materials for Energy and Environmental Applications, Springer Verlag,
             London, 2013.
          [27]  J. Zhou, X.S. Zhao, Visible-light-responsive titanium dioxide photocatalysts, in: M. Anpo,
             P.V. Kamat (Eds.), Environmental Benign Photocatalysts, Nanostructured Science and
             Technology, Springer Science, New York, 2010.
          [28]  T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic
             and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535.
          [29]  A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO 2  surfaces: principles, mech-
             anisms, and selected results, Chem. Rev. 95 (1995) 735–758.
          [30]  M.G. Walter, E.L. Warren, J.R. Mckone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis,
             Solar water splitting cells, Chem. Rev. 110 (2010) 6446–6473.
          [31]  Office of Energy Efficiency & Renewable Energy, US Department of Energy.
             Hydrogen Production: Natural Gas Reforming.  https://energy.gov/eere/fuelcells/
             hydrogen-production-natural-gas-reforming.
          [32]  J. Albero, H. Garcia, Photocatalytic CO 2  reduction, in: Heterogeneous Photocatalysis,
             Green Chemistry and Sustainable Technology, Springer Verlag, Berlin/Heidelberg, 2016.
          [33]  J. Qiao, Y. Liu, J. Zhang, Electrochemical Reduction of Carbon Dioxide: Fundamentals
             and Technologies, CRC Press by Taylor & Francis Group, Boca Raton, 2017.
          [34]  W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H 2
             production and CO 2  conversion, Phys. Chem. Chem. Phys. 15 (2013) 2632–2649.
   80   81   82   83   84   85   86   87   88   89   90