Page 85 - Multifunctional Photocatalytic Materials for Energy
P. 85
74 Multifunctional Photocatalytic Materials for Energy
[14] A.G. Tamirat, J. Rick, A.A. Dubale, W. Su, B. Hwang, Using hematite for photoelectro-
chemical water splitting: a review of current progress and challenges, Nanoscale Horiz. 1
(2016) 243–267.
[15] W. Yin, H. Tang, S. Wei, M.M. Al-Jassim, J. Turner, Y. Yan, Band Structure engineering
of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2 ,
Phys. Rev. B 82 (2010), 045106.
[16] M.T. Uddin, Metal Oxide Heterostructures for Efficient Photocatalysts (Ph.D. thesis),
Universte Science et Technologies-Bordeaux I, Darmstadt, 2013. https://tel.archives-
ouvertes.fr/tel-00879226/.
[17] W.D. Callister Jr., Materials Science and Engineering: An Introduction, fifth ed., John
Wiley &Sons, New York, 2011.
[18] E. Thimsen, Metal Oxide Semiconductors for Solar Energy Harvesting (All These and
Dissertations (ETD)), Washington University, St. Louis, MO, 2009.
[19] “III. Absorption of Light and Generation” in “Semiconductor and Solar Interactions” in
Section “The Science of Solar”, @ PHOTON LibreTexts TM , https://photon.libretexts.org
(accessed 03.17.17).
[20] M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.
[21] C. Honsberg, B. Stuart, Absorption of Light, PVEducation.org, http://www.pveducation.
org/pvcdrom/pn-junction/absorption-of-light, July 2017.
[22] B. V. Zeghbroeck. Principles of Semiconductors Devices. University of Colorado
Boulder, Boulder. http://ecee.colorado.edu/~bart/book/recomb.htm, https://ecee.colorado.
edu/~bart/book/book/title.htm.
[23] R. Entner, Modeling and Simulation of Negative Bias Temperature Instability, Technischen
Universitat Wien, Österreich, 2007. http://www.iue.tuwien.ac.at/phd/entner/node11.html.
[24] S. Gimenez, J. Bisquert, Photoelectrochemcial Solar Fuel Production: From Basic
Principles to Advanced Devices, Springer Nature, AG Switzerland, 2016.
[25] H. Tuysuz, C.K. Chan, Solar Energy for Fuels, Springer, New York, 2016.
[26] J.M. Coronado, F. Fresno, M.D. Hernandez-Alonso, R. Portela, Design of Advanced
Photocatalytic Materials for Energy and Environmental Applications, Springer Verlag,
London, 2013.
[27] J. Zhou, X.S. Zhao, Visible-light-responsive titanium dioxide photocatalysts, in: M. Anpo,
P.V. Kamat (Eds.), Environmental Benign Photocatalysts, Nanostructured Science and
Technology, Springer Science, New York, 2010.
[28] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic
and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535.
[29] A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO 2 surfaces: principles, mech-
anisms, and selected results, Chem. Rev. 95 (1995) 735–758.
[30] M.G. Walter, E.L. Warren, J.R. Mckone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis,
Solar water splitting cells, Chem. Rev. 110 (2010) 6446–6473.
[31] Office of Energy Efficiency & Renewable Energy, US Department of Energy.
Hydrogen Production: Natural Gas Reforming. https://energy.gov/eere/fuelcells/
hydrogen-production-natural-gas-reforming.
[32] J. Albero, H. Garcia, Photocatalytic CO 2 reduction, in: Heterogeneous Photocatalysis,
Green Chemistry and Sustainable Technology, Springer Verlag, Berlin/Heidelberg, 2016.
[33] J. Qiao, Y. Liu, J. Zhang, Electrochemical Reduction of Carbon Dioxide: Fundamentals
and Technologies, CRC Press by Taylor & Francis Group, Boca Raton, 2017.
[34] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H 2
production and CO 2 conversion, Phys. Chem. Chem. Phys. 15 (2013) 2632–2649.