Page 88 - Multifunctional Photocatalytic Materials for Energy
P. 88

Energy band engineering of metal oxide for enhanced visible light absorption  77

            [72]  A.  Kudo, K.  Omori, H.  Kato,  A novel aqueous process for preparation of crystal
                form-controlled and highly crystalline BiVO 4  powder from layered vanadates at room
                temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121
                (1999) 11459–11467.
            [73]  Z. Huang, L. Pan, J. Zou, X. Zhang, L. Wang, Nanostructured bismuth vanadate-based
                materials for solar-energy-driven water oxidation: a review on recent progress, Nanoscale
                6 (2014) 14044–14063.
            [74]  K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN/ZnO
                solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am.
                Chem. Soc. 127 (2005) 8286–8287.
            [75]  S.X. Ouyang, J.H. Ye, β-AgAl 1-x Ga x O 2  solid-solution photocatalysts: continuous modu-
                lation of electronic structure toward high-performance visible-light photoactivity, J. Am.
                Chem. Soc. 133 (2011) 7757–7763.
            [76]  D.F. Wang, T. Kako, J.H. Ye, New series of solid-solution semiconductors (AgNbO 3 ) 1-x
                (SrTiO 3 ) x  with modulated band structure and enhanced visible-light photocatalytic activ-
                ity, J. Phys. Chem. C 113 (2009) 3785–3792.
            [77]  W.F.  Yao, J.H.  Ye, Photophysical and photocatalytic properties of Ca 1x Bi x V x Mo 1-x O 4
                solid solutions, J. Phys. Chem. B 110 (2006) 11188–11195.
            [78]  B.  Zoellner, S.  Stuart, C.-C.  Chung, D.B.  Dougherty, J.L.  Jones, P.A.  Maggard,
                CuNb 1−x Ta x O 3  (x≪0.25) solid solutions: impact of Ta(V) substitution and Cu(I) defi-
                ciency on their structure, photocatalytic, and photoelectrochemical properties, J. Mater.
                Chem. A 4 (2016) 3115–3126.
            [79]  M. Lalanne, A. Barnabé, F. Mathieu, P. Tailhades, Synthesis and thermostructural stud-
                ies of a CuFe 1-x Cr x O 2  delafossite solid solution with 0≪x≪1, Inorg. Chem. 48 (2009)
                6065–6071.
            [80]  J.R. Swierk, T.E. Mallouk, Design and development of photoanodes for water-splitting
                dye-sensitized photoelectrochemical cells, Chem. Soc. Rev. 42 (2013) 2357–2387.
            [81]  J. Li, M. Hoffmann, H. Shen, C. Fabrega, J.D. Prades, T. Andreu, F. Hernandez-Ramirez,
                S. Mathur, Enhanced photoelectrochemical activity of an excitonic staircase in CdS@
                TiO 2  and CdS@anatase@rutile  TiO 2  heterostructures, J. Mater. Chem. 22 (2012)
                20472–20476.
            [82]  G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Cliford, E. Klem, L. Levina,
                E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors, Nature 442 (2006)
                180–183.
            [83]  S.A.  Mcdonald, G.K.  Konstantatos, S.  Zhang, P.W.  Cyr, E.J.D.  Klem, L.  Levina,
                E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photo-
                voltaics, Nat. Mater. 4 (2005) 138–142.
            [84]  X. Zhang, Y. Chen, R. Liu, D.P. Tsai, Plasmonic photocatalysis, Rep. Prog. Phys. 76
                (2013), 046401.
            [85]  T. Ming, H.J. Chen, R.B. Jiang, Q. Li, J.F. Wang, R. Jiang, B. Li, C. Fang, J. Wang,
                Plasmon-controlled fluorescence: beyond the intensity enhancement, J. Phys. Chem. Lett.
                3 (2012) 191–202. Metal/semiconductor hybrid nanostructures for plasmon-enhanced ap-
                plications, Adv. Mater. 26 (2014) 5274–5309.
            [86]  C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide inter-
                faces for photovoltaic and photocatalytic devices, Nat. Photonics 8 (2014) 95–103.
            [87]  H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9
                (2010) 205–213.
            [88]  W. Ye, R. Long, H. Huang, Y. Xiong, Plasmonic nanostrucutres in solar energy conver-
                sion, J. Mater. Chem. C 5 (2017) 1008–1021.
   83   84   85   86   87   88   89   90   91   92   93