Page 88 - Multifunctional Photocatalytic Materials for Energy
P. 88
Energy band engineering of metal oxide for enhanced visible light absorption 77
[72] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal
form-controlled and highly crystalline BiVO 4 powder from layered vanadates at room
temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121
(1999) 11459–11467.
[73] Z. Huang, L. Pan, J. Zou, X. Zhang, L. Wang, Nanostructured bismuth vanadate-based
materials for solar-energy-driven water oxidation: a review on recent progress, Nanoscale
6 (2014) 14044–14063.
[74] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN/ZnO
solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am.
Chem. Soc. 127 (2005) 8286–8287.
[75] S.X. Ouyang, J.H. Ye, β-AgAl 1-x Ga x O 2 solid-solution photocatalysts: continuous modu-
lation of electronic structure toward high-performance visible-light photoactivity, J. Am.
Chem. Soc. 133 (2011) 7757–7763.
[76] D.F. Wang, T. Kako, J.H. Ye, New series of solid-solution semiconductors (AgNbO 3 ) 1-x
(SrTiO 3 ) x with modulated band structure and enhanced visible-light photocatalytic activ-
ity, J. Phys. Chem. C 113 (2009) 3785–3792.
[77] W.F. Yao, J.H. Ye, Photophysical and photocatalytic properties of Ca 1x Bi x V x Mo 1-x O 4
solid solutions, J. Phys. Chem. B 110 (2006) 11188–11195.
[78] B. Zoellner, S. Stuart, C.-C. Chung, D.B. Dougherty, J.L. Jones, P.A. Maggard,
CuNb 1−x Ta x O 3 (x≪0.25) solid solutions: impact of Ta(V) substitution and Cu(I) defi-
ciency on their structure, photocatalytic, and photoelectrochemical properties, J. Mater.
Chem. A 4 (2016) 3115–3126.
[79] M. Lalanne, A. Barnabé, F. Mathieu, P. Tailhades, Synthesis and thermostructural stud-
ies of a CuFe 1-x Cr x O 2 delafossite solid solution with 0≪x≪1, Inorg. Chem. 48 (2009)
6065–6071.
[80] J.R. Swierk, T.E. Mallouk, Design and development of photoanodes for water-splitting
dye-sensitized photoelectrochemical cells, Chem. Soc. Rev. 42 (2013) 2357–2387.
[81] J. Li, M. Hoffmann, H. Shen, C. Fabrega, J.D. Prades, T. Andreu, F. Hernandez-Ramirez,
S. Mathur, Enhanced photoelectrochemical activity of an excitonic staircase in CdS@
TiO 2 and CdS@anatase@rutile TiO 2 heterostructures, J. Mater. Chem. 22 (2012)
20472–20476.
[82] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Cliford, E. Klem, L. Levina,
E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors, Nature 442 (2006)
180–183.
[83] S.A. Mcdonald, G.K. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina,
E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photo-
voltaics, Nat. Mater. 4 (2005) 138–142.
[84] X. Zhang, Y. Chen, R. Liu, D.P. Tsai, Plasmonic photocatalysis, Rep. Prog. Phys. 76
(2013), 046401.
[85] T. Ming, H.J. Chen, R.B. Jiang, Q. Li, J.F. Wang, R. Jiang, B. Li, C. Fang, J. Wang,
Plasmon-controlled fluorescence: beyond the intensity enhancement, J. Phys. Chem. Lett.
3 (2012) 191–202. Metal/semiconductor hybrid nanostructures for plasmon-enhanced ap-
plications, Adv. Mater. 26 (2014) 5274–5309.
[86] C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide inter-
faces for photovoltaic and photocatalytic devices, Nat. Photonics 8 (2014) 95–103.
[87] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9
(2010) 205–213.
[88] W. Ye, R. Long, H. Huang, Y. Xiong, Plasmonic nanostrucutres in solar energy conver-
sion, J. Mater. Chem. C 5 (2017) 1008–1021.