Page 87 - Multifunctional Photocatalytic Materials for Energy
P. 87
76 Multifunctional Photocatalytic Materials for Energy
[53] Y. Park, K.J. McDonald, K. Choi, Progress in bismuth vanadate photoanodes for use in
solar water oxidation, Chem. Soc. Rev. 42 (2013) 2321–2337.
[54] L. Cai, J. Zhao, H. Li, J. Park, I. Cho, H.S. Han, X. Zheng, One-Step hydrothermal depo-
sition of Ni:FeOOH onto photoanodes for enhanced water oxidation, ACS Energy Lett. 1
(2016) 624–632.
[55] H. Zhang, C. Cheng, Three-dimensional FTO/TiO 2 /BiVO 4 composite inverse opals pho-
toanode with excellent photoelectrochemical performance, ACS Energy Lett. 2 (2017)
813–821.
[56] S. Wang, P. Chen, J. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO 4 photoan-
ode for efficient photoelectrochemical water splitting, Angew. Chem. Int. Ed. 56 (2017)
8500–8504.
[57] I. Sullivan, B. Zoellner, P.A. Maggard, Copper(I)-based p-type oxides for photoelectro-
chemical and photovoltaic solar energy conversion, Chem. Mater. 28 (2016) 5999–6016.
[58] S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol,
Comprehensive evaluation of CuBi 2 O 4 as a photocathode material for photoelectrochem-
ical water splitting, Chem. Mater. 28 (2016) 4231–4242.
[59] Y. Jang, Y. Park, H. Kim, Y. Choi, S. Choi, J. Lee, Oxygen-intercalated CuFeO 2 photoca-
thode fabricated by hybrid microwave annealing for efficient solar hydrogen production,
Chem. Mater. 28 (2016) 6054–6061.
[60] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photo-
cathode for photoelectrochemical water reduction, Nat. Mater. 10 (2011) 456–461.
[61] H. Qi, J. Wolfe, D. Fichou, Z. Chen, Cu 2 O photocathode for low bias photoelectrochem-
ical water splitting enabled by NiFe-layered double hydroxide Co-catalyst, Sci Rep 6
(2016), 30882.
[62] M. Schreier, F. Heroguel, L. Steier, S. Ahmad, J.S. Luterbacher, M.T. Mayer, J. Luo,
M. Gratzel, Solar conversion of CO 2 to CO using Earth-abundant electrocatalysts pre-
pared by atomic layer modification of CuO, Nat. Energy 2 (2017), 17087.
[63] Y. Nishi, T. Miyata, T. Minami, Effect of inserting a thin buffer layer on the efficiency in
N-ZnO/P-Cu 2 O heterojunction solar cells, J. Vac. Sci. Technol. 30 (2012), 04D103.
[64] C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Gratzel, X. Hu, Hydrogen evolution from
a copper (I) oxide photocathode coated with amorphous molybdenum sulphide catalyst,
Nat. Commun. 5 (2014) 4059.
[65] J. Luo, L. Seier, M.K. Son, M. Schreier, M.T. Mayer, M. Gratzel, Cu 2 O nanowires photo-
cathodes for efficient and durable solar water splitting, Nano Lett. 16 (2016) 1848–1857.
[66] S.D. Tilley, M. Schreier, J. Azevedo, M. Stefik, M. Graetzel, Ruthenium oxide hydro-
gen evolution catalysis on composite cuprous oxide water splitting photocathodes, Adv.
Funct. Mater. 24 (2014) 303–311.
[67] M.A. Henderson, J.M. White, H. Uetsuka, H. Onishi, Photochemical charge transfer and
trapping at the interface between an organic adlayer and an oxide semiconductor, J. Am.
Chem. Soc. 125 (2003) 14974–14975.
[68] Doping Semiconductor. https://en.wikipedia.org/wiki/Doping_(semiconductor).
[69] R. Asashi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible light photocatalysis in
nitrogen-doped titanium oxide, Science 293 (2001) 269–271.
[70] J. Wang, D. Tafen, J. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, Origin of
photocatalytic activity of nitrogen-doped TiO 2 nanobelts, J. Am. Chem. Soc. 131 (2009)
12290–12297.
[71] F. Meng, Z. Hong, J. Arndt, M. Li, M. Zhi, F. Yang, N. Wu, Visible light photocatalytic
activity of nitrogen-doped La 2 Ti 2 O 7 nanosheets originating from band gap narrowing,
Nano Res. 5 (2012) 213–221.