Page 86 - Multifunctional Photocatalytic Materials for Energy
P. 86
Energy band engineering of metal oxide for enhanced visible light absorption 75
[35] Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-
splitting, Nat. Photonics 6 (2012) 511–518.
[36] S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic
conversion of carbon dioxide to hydrocarbons, ACS Nano 4 (2010) 1259–1278.
[37] Photoelectrochemical reduction of CO 2 . https://en.wikipedia.org/wiki/Photoelectrochemical_
reduction_of_CO 2 .
[38] K. Zhang, M. Ma, P. Li, D.H. Wang, J.H. Park, Water splitting in tandem devices: moving
photolysis beyond electrolysis, Adv. Energy Mater. 6 (2016), 1600602.
[39] J. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey,
J. Guo, D. Wang, Enabling unassisted solar water splitting by iron oxide and silicon, Nat.
Commun. 6 (2015) 8447.
[40] J. Brillet, J. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel,
K. Sivula, Highly efficient water splitting by a dual-absorber tandem cell, Nat. Photonics
6 (2012) 824–828.
[41] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Over 18% solar energy
conversion to generation of hydrogen fuel: theory and experimental for efficient solar
water splitting, Int. J. Hydrog. Energy 26 (2001) 653–659.
[42] G.G. Bessegato, T.T. Guaraldo, M.V.B. Zanoni, Enhancement of photoelectrocatalysis
by using nanostructured electrodes, in: M. Aliofkhazraei (Ed.), Modern Electrochemical
Methods in Nano, Surface and Corrosion Science, InTech, Rijeka, Croatia, 2014.
[43] A.G. Tamirat, W. Su, A. Dubale, H. Chen, B. Hwang, Photoelectrochemical water split-
ting at low applied potential using a NiOOH coated codoped (Sn, Zr)α-Fe 2 O 3 photoan-
ode, J. Mater. Chem. A 3 (2015) 5949–5961.
[44] L. Zhou, C. Zhao, B. Giri, P. Allen, X. Xu, H. Joshi, Y. Fan, L.V. Titova, P.M. Rao, High
light absorption and charge separation efficiency at low applied voltage from Sb-doped
SnO 2 /BiVO 4 core/shell nanorod-array photoanodes, Nano Lett. 16 (2016) 3463–3474.
[45] J. Li, S.K. Cushing, D. Chu, P. Zheng, J. Bright, C. Castle, A. Manivannan, N. Wu,
Distinguishing surface effects of gold nanoparticles from plasmonic effect on photoelec-
trochemical water splitting by hematite, J. Mater. Res. 31 (2016) 1608–1615.
[46] T.W. Kim, K.S. Choi, Nanoporous BiVO 4 photoanodes with dual-layer oxygen evolution
catalysts for solar water splitting, Science 343 (2014) 990–994.
[47] F.F. Abdi, N. Firet, R. van de Krol, Efficient BiVO 4 thin film photoanodes modified with
cobalt phosphate catalyst and W-doping, ChemCatChem 5 (2013) 490–496.
[48] W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH ox-
ygen evolution reaction catalyst for photoelectrochemical water splitting, J. Am. Chem.
Soc. 136 (2014) 2843–2850.
[49] T.W. Kim, Y. Ping, G.A. Galli, K.S. Choi, Simultaneous enhancements in photon absorp-
tion and charge transport of bismuth vanadate photoanodes for solar water splitting, Nat.
Commun. 6 (2015) 8769.
[50] D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley,
C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal,
P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO 2 , Nat.
Mater. 12 (2013) 798–801.
[51] A. Walsh, Y. Yan, M. Huda, M. Al-Jassim, S. Wei, Band Edge electronic structure of
BiVO 4 elucidating the role of the Bi s and V d orbitals, Chem. Mater. 21 (2009) 547–551.
[52] J. Kang, Y. Noh, J. Kim, H. Choi, T. Jeon, D. Ahn, J. Kim, S. Yu, H. Park, J. Yum, W. Choi,
D.C. Dunand, H. Choe, Y. Sung, Iron oxide photoelectrode with multidimensional archi-
tecture for highly efficient photoelectrochemical water splitting, Angew. Chem. Int. Ed.
56 (2017) 6583–6588.